Fuzzy Classifiers for Diagnosing of Parkinson’s Disease Based on Static Handwritten Data

Diagnosis of Parkinson’s disease is an expensive procedure that includes transcranial sonography and brain tomography. In this regard, simple and accurate screening diagnostic methods are relevant. Handwritten static drawings of spirals and meanders are analyzed using machine learning for diagnosing...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optoelectronics, instrumentation, and data processing instrumentation, and data processing, 2023-06, Vol.59 (3), p.346-357
Hauptverfasser: Hodashinsky, I. A., Shurygin, Yu. A., Sarin, K. S., Bardamova, M. B., Slezkin, A. O., Svetlakov, M. O., Koryshev, N. P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 357
container_issue 3
container_start_page 346
container_title Optoelectronics, instrumentation, and data processing
container_volume 59
creator Hodashinsky, I. A.
Shurygin, Yu. A.
Sarin, K. S.
Bardamova, M. B.
Slezkin, A. O.
Svetlakov, M. O.
Koryshev, N. P.
description Diagnosis of Parkinson’s disease is an expensive procedure that includes transcranial sonography and brain tomography. In this regard, simple and accurate screening diagnostic methods are relevant. Handwritten static drawings of spirals and meanders are analyzed using machine learning for diagnosing of Parkinson’s disease based on the publicly available HandPD dataset. Fuzzy classifiers make it possible to identify a disease by a pattern are constructed using original methods. Since the HandPD dataset is imbalanced, artificial sampling algorithms are used in the work. The accuracy of the used models and methods is statistically compared; features are ranked.
doi_str_mv 10.3103/S8756699023030081
format Article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_3103_S8756699023030081</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_3103_S8756699023030081</sourcerecordid><originalsourceid>FETCH-LOGICAL-c240t-e79db8fc733523529a31520730724562510022241c9e6c6bae63382566a75f093</originalsourceid><addsrcrecordid>eNp9kMFKAzEQhoMoWKsP4C0vsDpJNpvNUVvbCgWF6sXLkm6TkloTyWyR9uRr-Ho-iSn1JgjDzOGbf_jnJ-SSwZVgIK5ntZJVpTVwAQKgZkekx7QoC6XL8pj09rjY81NyhrgCkDKDHnkZbXa7LR2sDaJ33iakLiY69GYZIvqwpNHRR5NefcAYvj-_MDO0Bi29zW1BY6CzznS-pRMTFh_Jd50NdGg6c05OnFmjvfidffI8unsaTIrpw_h-cDMtWl5CV1ilF_PatUoIyXNpI5jkoAQoXsqKSwbAOS9Zq23VVnNjKyFqnr81SjrQok_Y4W6bImKyrnlP_s2kbcOg2YfT_Akna_hBg3k3LG1qVnGTQrb5j-gHHjVl4A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Fuzzy Classifiers for Diagnosing of Parkinson’s Disease Based on Static Handwritten Data</title><source>SpringerLink Journals - AutoHoldings</source><creator>Hodashinsky, I. A. ; Shurygin, Yu. A. ; Sarin, K. S. ; Bardamova, M. B. ; Slezkin, A. O. ; Svetlakov, M. O. ; Koryshev, N. P.</creator><creatorcontrib>Hodashinsky, I. A. ; Shurygin, Yu. A. ; Sarin, K. S. ; Bardamova, M. B. ; Slezkin, A. O. ; Svetlakov, M. O. ; Koryshev, N. P.</creatorcontrib><description>Diagnosis of Parkinson’s disease is an expensive procedure that includes transcranial sonography and brain tomography. In this regard, simple and accurate screening diagnostic methods are relevant. Handwritten static drawings of spirals and meanders are analyzed using machine learning for diagnosing of Parkinson’s disease based on the publicly available HandPD dataset. Fuzzy classifiers make it possible to identify a disease by a pattern are constructed using original methods. Since the HandPD dataset is imbalanced, artificial sampling algorithms are used in the work. The accuracy of the used models and methods is statistically compared; features are ranked.</description><identifier>ISSN: 8756-6990</identifier><identifier>EISSN: 1934-7944</identifier><identifier>DOI: 10.3103/S8756699023030081</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Lasers ; Optical Devices ; Optics ; Photonics ; Physics ; Physics and Astronomy</subject><ispartof>Optoelectronics, instrumentation, and data processing, 2023-06, Vol.59 (3), p.346-357</ispartof><rights>Allerton Press, Inc. 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c240t-e79db8fc733523529a31520730724562510022241c9e6c6bae63382566a75f093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.3103/S8756699023030081$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.3103/S8756699023030081$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Hodashinsky, I. A.</creatorcontrib><creatorcontrib>Shurygin, Yu. A.</creatorcontrib><creatorcontrib>Sarin, K. S.</creatorcontrib><creatorcontrib>Bardamova, M. B.</creatorcontrib><creatorcontrib>Slezkin, A. O.</creatorcontrib><creatorcontrib>Svetlakov, M. O.</creatorcontrib><creatorcontrib>Koryshev, N. P.</creatorcontrib><title>Fuzzy Classifiers for Diagnosing of Parkinson’s Disease Based on Static Handwritten Data</title><title>Optoelectronics, instrumentation, and data processing</title><addtitle>Optoelectron.Instrument.Proc</addtitle><description>Diagnosis of Parkinson’s disease is an expensive procedure that includes transcranial sonography and brain tomography. In this regard, simple and accurate screening diagnostic methods are relevant. Handwritten static drawings of spirals and meanders are analyzed using machine learning for diagnosing of Parkinson’s disease based on the publicly available HandPD dataset. Fuzzy classifiers make it possible to identify a disease by a pattern are constructed using original methods. Since the HandPD dataset is imbalanced, artificial sampling algorithms are used in the work. The accuracy of the used models and methods is statistically compared; features are ranked.</description><subject>Lasers</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Photonics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><issn>8756-6990</issn><issn>1934-7944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKAzEQhoMoWKsP4C0vsDpJNpvNUVvbCgWF6sXLkm6TkloTyWyR9uRr-Ho-iSn1JgjDzOGbf_jnJ-SSwZVgIK5ntZJVpTVwAQKgZkekx7QoC6XL8pj09rjY81NyhrgCkDKDHnkZbXa7LR2sDaJ33iakLiY69GYZIvqwpNHRR5NefcAYvj-_MDO0Bi29zW1BY6CzznS-pRMTFh_Jd50NdGg6c05OnFmjvfidffI8unsaTIrpw_h-cDMtWl5CV1ilF_PatUoIyXNpI5jkoAQoXsqKSwbAOS9Zq23VVnNjKyFqnr81SjrQok_Y4W6bImKyrnlP_s2kbcOg2YfT_Akna_hBg3k3LG1qVnGTQrb5j-gHHjVl4A</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Hodashinsky, I. A.</creator><creator>Shurygin, Yu. A.</creator><creator>Sarin, K. S.</creator><creator>Bardamova, M. B.</creator><creator>Slezkin, A. O.</creator><creator>Svetlakov, M. O.</creator><creator>Koryshev, N. P.</creator><general>Pleiades Publishing</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230601</creationdate><title>Fuzzy Classifiers for Diagnosing of Parkinson’s Disease Based on Static Handwritten Data</title><author>Hodashinsky, I. A. ; Shurygin, Yu. A. ; Sarin, K. S. ; Bardamova, M. B. ; Slezkin, A. O. ; Svetlakov, M. O. ; Koryshev, N. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c240t-e79db8fc733523529a31520730724562510022241c9e6c6bae63382566a75f093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Lasers</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Photonics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hodashinsky, I. A.</creatorcontrib><creatorcontrib>Shurygin, Yu. A.</creatorcontrib><creatorcontrib>Sarin, K. S.</creatorcontrib><creatorcontrib>Bardamova, M. B.</creatorcontrib><creatorcontrib>Slezkin, A. O.</creatorcontrib><creatorcontrib>Svetlakov, M. O.</creatorcontrib><creatorcontrib>Koryshev, N. P.</creatorcontrib><collection>CrossRef</collection><jtitle>Optoelectronics, instrumentation, and data processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hodashinsky, I. A.</au><au>Shurygin, Yu. A.</au><au>Sarin, K. S.</au><au>Bardamova, M. B.</au><au>Slezkin, A. O.</au><au>Svetlakov, M. O.</au><au>Koryshev, N. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fuzzy Classifiers for Diagnosing of Parkinson’s Disease Based on Static Handwritten Data</atitle><jtitle>Optoelectronics, instrumentation, and data processing</jtitle><stitle>Optoelectron.Instrument.Proc</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>59</volume><issue>3</issue><spage>346</spage><epage>357</epage><pages>346-357</pages><issn>8756-6990</issn><eissn>1934-7944</eissn><abstract>Diagnosis of Parkinson’s disease is an expensive procedure that includes transcranial sonography and brain tomography. In this regard, simple and accurate screening diagnostic methods are relevant. Handwritten static drawings of spirals and meanders are analyzed using machine learning for diagnosing of Parkinson’s disease based on the publicly available HandPD dataset. Fuzzy classifiers make it possible to identify a disease by a pattern are constructed using original methods. Since the HandPD dataset is imbalanced, artificial sampling algorithms are used in the work. The accuracy of the used models and methods is statistically compared; features are ranked.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.3103/S8756699023030081</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 8756-6990
ispartof Optoelectronics, instrumentation, and data processing, 2023-06, Vol.59 (3), p.346-357
issn 8756-6990
1934-7944
language eng
recordid cdi_crossref_primary_10_3103_S8756699023030081
source SpringerLink Journals - AutoHoldings
subjects Lasers
Optical Devices
Optics
Photonics
Physics
Physics and Astronomy
title Fuzzy Classifiers for Diagnosing of Parkinson’s Disease Based on Static Handwritten Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T16%3A47%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fuzzy%20Classifiers%20for%20Diagnosing%20of%20Parkinson%E2%80%99s%20Disease%20Based%20on%20Static%20Handwritten%20Data&rft.jtitle=Optoelectronics,%20instrumentation,%20and%20data%20processing&rft.au=Hodashinsky,%20I.%20A.&rft.date=2023-06-01&rft.volume=59&rft.issue=3&rft.spage=346&rft.epage=357&rft.pages=346-357&rft.issn=8756-6990&rft.eissn=1934-7944&rft_id=info:doi/10.3103/S8756699023030081&rft_dat=%3Ccrossref_sprin%3E10_3103_S8756699023030081%3C/crossref_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true