Fuzzy Classifiers for Diagnosing of Parkinson’s Disease Based on Static Handwritten Data
Diagnosis of Parkinson’s disease is an expensive procedure that includes transcranial sonography and brain tomography. In this regard, simple and accurate screening diagnostic methods are relevant. Handwritten static drawings of spirals and meanders are analyzed using machine learning for diagnosing...
Gespeichert in:
Veröffentlicht in: | Optoelectronics, instrumentation, and data processing instrumentation, and data processing, 2023-06, Vol.59 (3), p.346-357 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 357 |
---|---|
container_issue | 3 |
container_start_page | 346 |
container_title | Optoelectronics, instrumentation, and data processing |
container_volume | 59 |
creator | Hodashinsky, I. A. Shurygin, Yu. A. Sarin, K. S. Bardamova, M. B. Slezkin, A. O. Svetlakov, M. O. Koryshev, N. P. |
description | Diagnosis of Parkinson’s disease is an expensive procedure that includes transcranial sonography and brain tomography. In this regard, simple and accurate screening diagnostic methods are relevant. Handwritten static drawings of spirals and meanders are analyzed using machine learning for diagnosing of Parkinson’s disease based on the publicly available HandPD dataset. Fuzzy classifiers make it possible to identify a disease by a pattern are constructed using original methods. Since the HandPD dataset is imbalanced, artificial sampling algorithms are used in the work. The accuracy of the used models and methods is statistically compared; features are ranked. |
doi_str_mv | 10.3103/S8756699023030081 |
format | Article |
fullrecord | <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_3103_S8756699023030081</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_3103_S8756699023030081</sourcerecordid><originalsourceid>FETCH-LOGICAL-c240t-e79db8fc733523529a31520730724562510022241c9e6c6bae63382566a75f093</originalsourceid><addsrcrecordid>eNp9kMFKAzEQhoMoWKsP4C0vsDpJNpvNUVvbCgWF6sXLkm6TkloTyWyR9uRr-Ho-iSn1JgjDzOGbf_jnJ-SSwZVgIK5ntZJVpTVwAQKgZkekx7QoC6XL8pj09rjY81NyhrgCkDKDHnkZbXa7LR2sDaJ33iakLiY69GYZIvqwpNHRR5NefcAYvj-_MDO0Bi29zW1BY6CzznS-pRMTFh_Jd50NdGg6c05OnFmjvfidffI8unsaTIrpw_h-cDMtWl5CV1ilF_PatUoIyXNpI5jkoAQoXsqKSwbAOS9Zq23VVnNjKyFqnr81SjrQok_Y4W6bImKyrnlP_s2kbcOg2YfT_Akna_hBg3k3LG1qVnGTQrb5j-gHHjVl4A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Fuzzy Classifiers for Diagnosing of Parkinson’s Disease Based on Static Handwritten Data</title><source>SpringerLink Journals - AutoHoldings</source><creator>Hodashinsky, I. A. ; Shurygin, Yu. A. ; Sarin, K. S. ; Bardamova, M. B. ; Slezkin, A. O. ; Svetlakov, M. O. ; Koryshev, N. P.</creator><creatorcontrib>Hodashinsky, I. A. ; Shurygin, Yu. A. ; Sarin, K. S. ; Bardamova, M. B. ; Slezkin, A. O. ; Svetlakov, M. O. ; Koryshev, N. P.</creatorcontrib><description>Diagnosis of Parkinson’s disease is an expensive procedure that includes transcranial sonography and brain tomography. In this regard, simple and accurate screening diagnostic methods are relevant. Handwritten static drawings of spirals and meanders are analyzed using machine learning for diagnosing of Parkinson’s disease based on the publicly available HandPD dataset. Fuzzy classifiers make it possible to identify a disease by a pattern are constructed using original methods. Since the HandPD dataset is imbalanced, artificial sampling algorithms are used in the work. The accuracy of the used models and methods is statistically compared; features are ranked.</description><identifier>ISSN: 8756-6990</identifier><identifier>EISSN: 1934-7944</identifier><identifier>DOI: 10.3103/S8756699023030081</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Lasers ; Optical Devices ; Optics ; Photonics ; Physics ; Physics and Astronomy</subject><ispartof>Optoelectronics, instrumentation, and data processing, 2023-06, Vol.59 (3), p.346-357</ispartof><rights>Allerton Press, Inc. 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c240t-e79db8fc733523529a31520730724562510022241c9e6c6bae63382566a75f093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.3103/S8756699023030081$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.3103/S8756699023030081$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Hodashinsky, I. A.</creatorcontrib><creatorcontrib>Shurygin, Yu. A.</creatorcontrib><creatorcontrib>Sarin, K. S.</creatorcontrib><creatorcontrib>Bardamova, M. B.</creatorcontrib><creatorcontrib>Slezkin, A. O.</creatorcontrib><creatorcontrib>Svetlakov, M. O.</creatorcontrib><creatorcontrib>Koryshev, N. P.</creatorcontrib><title>Fuzzy Classifiers for Diagnosing of Parkinson’s Disease Based on Static Handwritten Data</title><title>Optoelectronics, instrumentation, and data processing</title><addtitle>Optoelectron.Instrument.Proc</addtitle><description>Diagnosis of Parkinson’s disease is an expensive procedure that includes transcranial sonography and brain tomography. In this regard, simple and accurate screening diagnostic methods are relevant. Handwritten static drawings of spirals and meanders are analyzed using machine learning for diagnosing of Parkinson’s disease based on the publicly available HandPD dataset. Fuzzy classifiers make it possible to identify a disease by a pattern are constructed using original methods. Since the HandPD dataset is imbalanced, artificial sampling algorithms are used in the work. The accuracy of the used models and methods is statistically compared; features are ranked.</description><subject>Lasers</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Photonics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><issn>8756-6990</issn><issn>1934-7944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKAzEQhoMoWKsP4C0vsDpJNpvNUVvbCgWF6sXLkm6TkloTyWyR9uRr-Ho-iSn1JgjDzOGbf_jnJ-SSwZVgIK5ntZJVpTVwAQKgZkekx7QoC6XL8pj09rjY81NyhrgCkDKDHnkZbXa7LR2sDaJ33iakLiY69GYZIvqwpNHRR5NefcAYvj-_MDO0Bi29zW1BY6CzznS-pRMTFh_Jd50NdGg6c05OnFmjvfidffI8unsaTIrpw_h-cDMtWl5CV1ilF_PatUoIyXNpI5jkoAQoXsqKSwbAOS9Zq23VVnNjKyFqnr81SjrQok_Y4W6bImKyrnlP_s2kbcOg2YfT_Akna_hBg3k3LG1qVnGTQrb5j-gHHjVl4A</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Hodashinsky, I. A.</creator><creator>Shurygin, Yu. A.</creator><creator>Sarin, K. S.</creator><creator>Bardamova, M. B.</creator><creator>Slezkin, A. O.</creator><creator>Svetlakov, M. O.</creator><creator>Koryshev, N. P.</creator><general>Pleiades Publishing</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230601</creationdate><title>Fuzzy Classifiers for Diagnosing of Parkinson’s Disease Based on Static Handwritten Data</title><author>Hodashinsky, I. A. ; Shurygin, Yu. A. ; Sarin, K. S. ; Bardamova, M. B. ; Slezkin, A. O. ; Svetlakov, M. O. ; Koryshev, N. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c240t-e79db8fc733523529a31520730724562510022241c9e6c6bae63382566a75f093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Lasers</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Photonics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hodashinsky, I. A.</creatorcontrib><creatorcontrib>Shurygin, Yu. A.</creatorcontrib><creatorcontrib>Sarin, K. S.</creatorcontrib><creatorcontrib>Bardamova, M. B.</creatorcontrib><creatorcontrib>Slezkin, A. O.</creatorcontrib><creatorcontrib>Svetlakov, M. O.</creatorcontrib><creatorcontrib>Koryshev, N. P.</creatorcontrib><collection>CrossRef</collection><jtitle>Optoelectronics, instrumentation, and data processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hodashinsky, I. A.</au><au>Shurygin, Yu. A.</au><au>Sarin, K. S.</au><au>Bardamova, M. B.</au><au>Slezkin, A. O.</au><au>Svetlakov, M. O.</au><au>Koryshev, N. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fuzzy Classifiers for Diagnosing of Parkinson’s Disease Based on Static Handwritten Data</atitle><jtitle>Optoelectronics, instrumentation, and data processing</jtitle><stitle>Optoelectron.Instrument.Proc</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>59</volume><issue>3</issue><spage>346</spage><epage>357</epage><pages>346-357</pages><issn>8756-6990</issn><eissn>1934-7944</eissn><abstract>Diagnosis of Parkinson’s disease is an expensive procedure that includes transcranial sonography and brain tomography. In this regard, simple and accurate screening diagnostic methods are relevant. Handwritten static drawings of spirals and meanders are analyzed using machine learning for diagnosing of Parkinson’s disease based on the publicly available HandPD dataset. Fuzzy classifiers make it possible to identify a disease by a pattern are constructed using original methods. Since the HandPD dataset is imbalanced, artificial sampling algorithms are used in the work. The accuracy of the used models and methods is statistically compared; features are ranked.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.3103/S8756699023030081</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 8756-6990 |
ispartof | Optoelectronics, instrumentation, and data processing, 2023-06, Vol.59 (3), p.346-357 |
issn | 8756-6990 1934-7944 |
language | eng |
recordid | cdi_crossref_primary_10_3103_S8756699023030081 |
source | SpringerLink Journals - AutoHoldings |
subjects | Lasers Optical Devices Optics Photonics Physics Physics and Astronomy |
title | Fuzzy Classifiers for Diagnosing of Parkinson’s Disease Based on Static Handwritten Data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T16%3A47%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fuzzy%20Classifiers%20for%20Diagnosing%20of%20Parkinson%E2%80%99s%20Disease%20Based%20on%20Static%20Handwritten%20Data&rft.jtitle=Optoelectronics,%20instrumentation,%20and%20data%20processing&rft.au=Hodashinsky,%20I.%20A.&rft.date=2023-06-01&rft.volume=59&rft.issue=3&rft.spage=346&rft.epage=357&rft.pages=346-357&rft.issn=8756-6990&rft.eissn=1934-7944&rft_id=info:doi/10.3103/S8756699023030081&rft_dat=%3Ccrossref_sprin%3E10_3103_S8756699023030081%3C/crossref_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |