Comparison of Accuracy in the Determination of Optical Vortex Coordinates by Different Methods

Two algorithms for the determination of optical vortex coordinates are considered. In the first one, the vortex is found by branching of interference pattern fringes; in the second one, as a result of processing of the wavefront gradient distribution. It is shown that both algorithms allow one to re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optoelectronics, instrumentation, and data processing instrumentation, and data processing, 2020-05, Vol.56 (3), p.221-227
Hauptverfasser: Kanev, F. Yu, Aksenov, V. P., Makenova, N. A., Veretekhin, I. D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 227
container_issue 3
container_start_page 221
container_title Optoelectronics, instrumentation, and data processing
container_volume 56
creator Kanev, F. Yu
Aksenov, V. P.
Makenova, N. A.
Veretekhin, I. D.
description Two algorithms for the determination of optical vortex coordinates are considered. In the first one, the vortex is found by branching of interference pattern fringes; in the second one, as a result of processing of the wavefront gradient distribution. It is shown that both algorithms allow one to record the coordinates with a high accuracy; in addition, it is possible to determine shifts of singular points appearing as a result of radiation diffraction.
doi_str_mv 10.3103/S8756699020030061
format Article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_3103_S8756699020030061</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_3103_S8756699020030061</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-d4bca46b10de1a15a75e560c4cbc0c6d76dcc6fe4252840846659662a6d7f6c43</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwAez8A4FxYjvJskqBIhV1wWNJ5EzGNFUbV7Yr0b8nUdkhsZrFuedqdBm7FXCXCcjuX4tcaV2WkAJkAFqcsYkoM5nkpZTnbDLiZOSX7CqEDYBSA5iwz8rt9sZ3wfXcWT5DPHiDR971PK6JzymS33W9id0psNrHDs2Wfzgf6ZtXzvl2xBR4c-Tzzlry1Ef-QnHt2nDNLqzZBrr5vVP2_vjwVi2S5erpuZotE0yLIiatbNBI3QhoSRihTK5IaUCJDQLqNtctorYkU5UWEgqptSq1Ts2ArEaZTZk49aJ3IXiy9d53O-OPtYB6HKj-M9DgpCcnDNn-i3y9cQffD2_-I_0Afcpouw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Comparison of Accuracy in the Determination of Optical Vortex Coordinates by Different Methods</title><source>SpringerNature Journals</source><creator>Kanev, F. Yu ; Aksenov, V. P. ; Makenova, N. A. ; Veretekhin, I. D.</creator><creatorcontrib>Kanev, F. Yu ; Aksenov, V. P. ; Makenova, N. A. ; Veretekhin, I. D.</creatorcontrib><description>Two algorithms for the determination of optical vortex coordinates are considered. In the first one, the vortex is found by branching of interference pattern fringes; in the second one, as a result of processing of the wavefront gradient distribution. It is shown that both algorithms allow one to record the coordinates with a high accuracy; in addition, it is possible to determine shifts of singular points appearing as a result of radiation diffraction.</description><identifier>ISSN: 8756-6990</identifier><identifier>EISSN: 1934-7944</identifier><identifier>DOI: 10.3103/S8756699020030061</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Computational and Data Acquisition Systems ; Lasers ; Optical Devices ; Optics ; Photonics ; Physics ; Physics and Astronomy</subject><ispartof>Optoelectronics, instrumentation, and data processing, 2020-05, Vol.56 (3), p.221-227</ispartof><rights>Allerton Press, Inc. 2020. Russian Text © The Author(s), 2020, published in Avtometriya, 2020, Vol. 56, No. 3, pp. 12–19.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c288t-d4bca46b10de1a15a75e560c4cbc0c6d76dcc6fe4252840846659662a6d7f6c43</citedby><cites>FETCH-LOGICAL-c288t-d4bca46b10de1a15a75e560c4cbc0c6d76dcc6fe4252840846659662a6d7f6c43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.3103/S8756699020030061$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.3103/S8756699020030061$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Kanev, F. Yu</creatorcontrib><creatorcontrib>Aksenov, V. P.</creatorcontrib><creatorcontrib>Makenova, N. A.</creatorcontrib><creatorcontrib>Veretekhin, I. D.</creatorcontrib><title>Comparison of Accuracy in the Determination of Optical Vortex Coordinates by Different Methods</title><title>Optoelectronics, instrumentation, and data processing</title><addtitle>Optoelectron.Instrument.Proc</addtitle><description>Two algorithms for the determination of optical vortex coordinates are considered. In the first one, the vortex is found by branching of interference pattern fringes; in the second one, as a result of processing of the wavefront gradient distribution. It is shown that both algorithms allow one to record the coordinates with a high accuracy; in addition, it is possible to determine shifts of singular points appearing as a result of radiation diffraction.</description><subject>Computational and Data Acquisition Systems</subject><subject>Lasers</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Photonics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><issn>8756-6990</issn><issn>1934-7944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwAez8A4FxYjvJskqBIhV1wWNJ5EzGNFUbV7Yr0b8nUdkhsZrFuedqdBm7FXCXCcjuX4tcaV2WkAJkAFqcsYkoM5nkpZTnbDLiZOSX7CqEDYBSA5iwz8rt9sZ3wfXcWT5DPHiDR971PK6JzymS33W9id0psNrHDs2Wfzgf6ZtXzvl2xBR4c-Tzzlry1Ef-QnHt2nDNLqzZBrr5vVP2_vjwVi2S5erpuZotE0yLIiatbNBI3QhoSRihTK5IaUCJDQLqNtctorYkU5UWEgqptSq1Ts2ArEaZTZk49aJ3IXiy9d53O-OPtYB6HKj-M9DgpCcnDNn-i3y9cQffD2_-I_0Afcpouw</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Kanev, F. Yu</creator><creator>Aksenov, V. P.</creator><creator>Makenova, N. A.</creator><creator>Veretekhin, I. D.</creator><general>Pleiades Publishing</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200501</creationdate><title>Comparison of Accuracy in the Determination of Optical Vortex Coordinates by Different Methods</title><author>Kanev, F. Yu ; Aksenov, V. P. ; Makenova, N. A. ; Veretekhin, I. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-d4bca46b10de1a15a75e560c4cbc0c6d76dcc6fe4252840846659662a6d7f6c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Computational and Data Acquisition Systems</topic><topic>Lasers</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Photonics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kanev, F. Yu</creatorcontrib><creatorcontrib>Aksenov, V. P.</creatorcontrib><creatorcontrib>Makenova, N. A.</creatorcontrib><creatorcontrib>Veretekhin, I. D.</creatorcontrib><collection>CrossRef</collection><jtitle>Optoelectronics, instrumentation, and data processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kanev, F. Yu</au><au>Aksenov, V. P.</au><au>Makenova, N. A.</au><au>Veretekhin, I. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of Accuracy in the Determination of Optical Vortex Coordinates by Different Methods</atitle><jtitle>Optoelectronics, instrumentation, and data processing</jtitle><stitle>Optoelectron.Instrument.Proc</stitle><date>2020-05-01</date><risdate>2020</risdate><volume>56</volume><issue>3</issue><spage>221</spage><epage>227</epage><pages>221-227</pages><issn>8756-6990</issn><eissn>1934-7944</eissn><abstract>Two algorithms for the determination of optical vortex coordinates are considered. In the first one, the vortex is found by branching of interference pattern fringes; in the second one, as a result of processing of the wavefront gradient distribution. It is shown that both algorithms allow one to record the coordinates with a high accuracy; in addition, it is possible to determine shifts of singular points appearing as a result of radiation diffraction.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.3103/S8756699020030061</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 8756-6990
ispartof Optoelectronics, instrumentation, and data processing, 2020-05, Vol.56 (3), p.221-227
issn 8756-6990
1934-7944
language eng
recordid cdi_crossref_primary_10_3103_S8756699020030061
source SpringerNature Journals
subjects Computational and Data Acquisition Systems
Lasers
Optical Devices
Optics
Photonics
Physics
Physics and Astronomy
title Comparison of Accuracy in the Determination of Optical Vortex Coordinates by Different Methods
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T16%3A51%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20Accuracy%20in%20the%20Determination%20of%20Optical%20Vortex%20Coordinates%20by%20Different%20Methods&rft.jtitle=Optoelectronics,%20instrumentation,%20and%20data%20processing&rft.au=Kanev,%20F.%20Yu&rft.date=2020-05-01&rft.volume=56&rft.issue=3&rft.spage=221&rft.epage=227&rft.pages=221-227&rft.issn=8756-6990&rft.eissn=1934-7944&rft_id=info:doi/10.3103/S8756699020030061&rft_dat=%3Ccrossref_sprin%3E10_3103_S8756699020030061%3C/crossref_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true