Comparison of Accuracy in the Determination of Optical Vortex Coordinates by Different Methods
Two algorithms for the determination of optical vortex coordinates are considered. In the first one, the vortex is found by branching of interference pattern fringes; in the second one, as a result of processing of the wavefront gradient distribution. It is shown that both algorithms allow one to re...
Gespeichert in:
Veröffentlicht in: | Optoelectronics, instrumentation, and data processing instrumentation, and data processing, 2020-05, Vol.56 (3), p.221-227 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 227 |
---|---|
container_issue | 3 |
container_start_page | 221 |
container_title | Optoelectronics, instrumentation, and data processing |
container_volume | 56 |
creator | Kanev, F. Yu Aksenov, V. P. Makenova, N. A. Veretekhin, I. D. |
description | Two algorithms for the determination of optical vortex coordinates are considered. In the first one, the vortex is found by branching of interference pattern fringes; in the second one, as a result of processing of the wavefront gradient distribution. It is shown that both algorithms allow one to record the coordinates with a high accuracy; in addition, it is possible to determine shifts of singular points appearing as a result of radiation diffraction. |
doi_str_mv | 10.3103/S8756699020030061 |
format | Article |
fullrecord | <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_3103_S8756699020030061</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_3103_S8756699020030061</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-d4bca46b10de1a15a75e560c4cbc0c6d76dcc6fe4252840846659662a6d7f6c43</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwAez8A4FxYjvJskqBIhV1wWNJ5EzGNFUbV7Yr0b8nUdkhsZrFuedqdBm7FXCXCcjuX4tcaV2WkAJkAFqcsYkoM5nkpZTnbDLiZOSX7CqEDYBSA5iwz8rt9sZ3wfXcWT5DPHiDR971PK6JzymS33W9id0psNrHDs2Wfzgf6ZtXzvl2xBR4c-Tzzlry1Ef-QnHt2nDNLqzZBrr5vVP2_vjwVi2S5erpuZotE0yLIiatbNBI3QhoSRihTK5IaUCJDQLqNtctorYkU5UWEgqptSq1Ts2ArEaZTZk49aJ3IXiy9d53O-OPtYB6HKj-M9DgpCcnDNn-i3y9cQffD2_-I_0Afcpouw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Comparison of Accuracy in the Determination of Optical Vortex Coordinates by Different Methods</title><source>SpringerNature Journals</source><creator>Kanev, F. Yu ; Aksenov, V. P. ; Makenova, N. A. ; Veretekhin, I. D.</creator><creatorcontrib>Kanev, F. Yu ; Aksenov, V. P. ; Makenova, N. A. ; Veretekhin, I. D.</creatorcontrib><description>Two algorithms for the determination of optical vortex coordinates are considered. In the first one, the vortex is found by branching of interference pattern fringes; in the second one, as a result of processing of the wavefront gradient distribution. It is shown that both algorithms allow one to record the coordinates with a high accuracy; in addition, it is possible to determine shifts of singular points appearing as a result of radiation diffraction.</description><identifier>ISSN: 8756-6990</identifier><identifier>EISSN: 1934-7944</identifier><identifier>DOI: 10.3103/S8756699020030061</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Computational and Data Acquisition Systems ; Lasers ; Optical Devices ; Optics ; Photonics ; Physics ; Physics and Astronomy</subject><ispartof>Optoelectronics, instrumentation, and data processing, 2020-05, Vol.56 (3), p.221-227</ispartof><rights>Allerton Press, Inc. 2020. Russian Text © The Author(s), 2020, published in Avtometriya, 2020, Vol. 56, No. 3, pp. 12–19.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c288t-d4bca46b10de1a15a75e560c4cbc0c6d76dcc6fe4252840846659662a6d7f6c43</citedby><cites>FETCH-LOGICAL-c288t-d4bca46b10de1a15a75e560c4cbc0c6d76dcc6fe4252840846659662a6d7f6c43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.3103/S8756699020030061$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.3103/S8756699020030061$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Kanev, F. Yu</creatorcontrib><creatorcontrib>Aksenov, V. P.</creatorcontrib><creatorcontrib>Makenova, N. A.</creatorcontrib><creatorcontrib>Veretekhin, I. D.</creatorcontrib><title>Comparison of Accuracy in the Determination of Optical Vortex Coordinates by Different Methods</title><title>Optoelectronics, instrumentation, and data processing</title><addtitle>Optoelectron.Instrument.Proc</addtitle><description>Two algorithms for the determination of optical vortex coordinates are considered. In the first one, the vortex is found by branching of interference pattern fringes; in the second one, as a result of processing of the wavefront gradient distribution. It is shown that both algorithms allow one to record the coordinates with a high accuracy; in addition, it is possible to determine shifts of singular points appearing as a result of radiation diffraction.</description><subject>Computational and Data Acquisition Systems</subject><subject>Lasers</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Photonics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><issn>8756-6990</issn><issn>1934-7944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwAez8A4FxYjvJskqBIhV1wWNJ5EzGNFUbV7Yr0b8nUdkhsZrFuedqdBm7FXCXCcjuX4tcaV2WkAJkAFqcsYkoM5nkpZTnbDLiZOSX7CqEDYBSA5iwz8rt9sZ3wfXcWT5DPHiDR971PK6JzymS33W9id0psNrHDs2Wfzgf6ZtXzvl2xBR4c-Tzzlry1Ef-QnHt2nDNLqzZBrr5vVP2_vjwVi2S5erpuZotE0yLIiatbNBI3QhoSRihTK5IaUCJDQLqNtctorYkU5UWEgqptSq1Ts2ArEaZTZk49aJ3IXiy9d53O-OPtYB6HKj-M9DgpCcnDNn-i3y9cQffD2_-I_0Afcpouw</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Kanev, F. Yu</creator><creator>Aksenov, V. P.</creator><creator>Makenova, N. A.</creator><creator>Veretekhin, I. D.</creator><general>Pleiades Publishing</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200501</creationdate><title>Comparison of Accuracy in the Determination of Optical Vortex Coordinates by Different Methods</title><author>Kanev, F. Yu ; Aksenov, V. P. ; Makenova, N. A. ; Veretekhin, I. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-d4bca46b10de1a15a75e560c4cbc0c6d76dcc6fe4252840846659662a6d7f6c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Computational and Data Acquisition Systems</topic><topic>Lasers</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Photonics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kanev, F. Yu</creatorcontrib><creatorcontrib>Aksenov, V. P.</creatorcontrib><creatorcontrib>Makenova, N. A.</creatorcontrib><creatorcontrib>Veretekhin, I. D.</creatorcontrib><collection>CrossRef</collection><jtitle>Optoelectronics, instrumentation, and data processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kanev, F. Yu</au><au>Aksenov, V. P.</au><au>Makenova, N. A.</au><au>Veretekhin, I. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of Accuracy in the Determination of Optical Vortex Coordinates by Different Methods</atitle><jtitle>Optoelectronics, instrumentation, and data processing</jtitle><stitle>Optoelectron.Instrument.Proc</stitle><date>2020-05-01</date><risdate>2020</risdate><volume>56</volume><issue>3</issue><spage>221</spage><epage>227</epage><pages>221-227</pages><issn>8756-6990</issn><eissn>1934-7944</eissn><abstract>Two algorithms for the determination of optical vortex coordinates are considered. In the first one, the vortex is found by branching of interference pattern fringes; in the second one, as a result of processing of the wavefront gradient distribution. It is shown that both algorithms allow one to record the coordinates with a high accuracy; in addition, it is possible to determine shifts of singular points appearing as a result of radiation diffraction.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.3103/S8756699020030061</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 8756-6990 |
ispartof | Optoelectronics, instrumentation, and data processing, 2020-05, Vol.56 (3), p.221-227 |
issn | 8756-6990 1934-7944 |
language | eng |
recordid | cdi_crossref_primary_10_3103_S8756699020030061 |
source | SpringerNature Journals |
subjects | Computational and Data Acquisition Systems Lasers Optical Devices Optics Photonics Physics Physics and Astronomy |
title | Comparison of Accuracy in the Determination of Optical Vortex Coordinates by Different Methods |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T16%3A51%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20Accuracy%20in%20the%20Determination%20of%20Optical%20Vortex%20Coordinates%20by%20Different%20Methods&rft.jtitle=Optoelectronics,%20instrumentation,%20and%20data%20processing&rft.au=Kanev,%20F.%20Yu&rft.date=2020-05-01&rft.volume=56&rft.issue=3&rft.spage=221&rft.epage=227&rft.pages=221-227&rft.issn=8756-6990&rft.eissn=1934-7944&rft_id=info:doi/10.3103/S8756699020030061&rft_dat=%3Ccrossref_sprin%3E10_3103_S8756699020030061%3C/crossref_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |