Nano- and Micromechanical Parameters of AISI 316L Steel

— The nano- and micro-indentation mechanical parameters of the AISI 316L stainless steel, such as nanohardness ( Н NI ), microhardness ( H MI ), the Young modulus ( E ) , the indices of plasticity ( H / E ) and resistance ( H 3 / E 2 ), and relaxation parameters h s , h res , h e-p and their depende...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Surface engineering and applied electrochemistry 2020-11, Vol.56 (6), p.719-726
Hauptverfasser: Grabco, D., Shikimaka, O., Pyrtsac, C., Barbos, Z., Popa, M., Prisacaru, A., Vilotic, D., Vilotic, M., Aleksandrov, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 726
container_issue 6
container_start_page 719
container_title Surface engineering and applied electrochemistry
container_volume 56
creator Grabco, D.
Shikimaka, O.
Pyrtsac, C.
Barbos, Z.
Popa, M.
Prisacaru, A.
Vilotic, D.
Vilotic, M.
Aleksandrov, S.
description — The nano- and micro-indentation mechanical parameters of the AISI 316L stainless steel, such as nanohardness ( Н NI ), microhardness ( H MI ), the Young modulus ( E ) , the indices of plasticity ( H / E ) and resistance ( H 3 / E 2 ), and relaxation parameters h s , h res , h e-p and their dependences on the value of P load applied to an indenter were studied. Hardness is shown to be slightly decreased in the microindentation interval ( Р = 100–500 mN) with an increase in the load, whereas it grows substantially with P decrease in the region of nanoindentation ( Р < 100 mN) to exhibit the Indentation Size Effect. The major peculiarities of the deformation process were established resulting from the study of the indenter penetration character. The presence of various mechanisms of the plastic deformation is supported during the indentation of AISI 316L steel (intragranular, intergranular, and rotational), and a physical interpretation of the observed patterns is offered. The results obtained are of great importance for practice, since the compound AISI 316L belongs to medical steels being used as implants in stomatology, bone impregnation, and biotechnology.
doi_str_mv 10.3103/S1068375520060071
format Article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_3103_S1068375520060071</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_3103_S1068375520060071</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-15ab2db3c68c5f15bc1d7e1864456c2c4e6bb3b7e3e90ece38e806994c806b5b3</originalsourceid><addsrcrecordid>eNp9j0tLxDAUhYMoOI7-AHf5A9GbpEnT5TD4KNQHVNclSW-1Qx-S1IX_3gwzO8HVuXDOdzmHkGsON5KDvK05aCNzpQSABsj5CVnxQmbMAIjTdCeb7f1zchHjDkBpocSK5M92mhm1U0ufeh_mEf2nnXpvB_pqgx1xwRDp3NFNWZdUcl3RekEcLslZZ4eIV0ddk_f7u7ftI6teHsrtpmJeCrUwrqwTrZNeG686rpznbY7c6CxT2gufoXZOuhwlFoAepUEDuigyn8QpJ9eEH_6mbjEG7Jqv0I82_DQcmv3y5s_yxIgDE1N2-sDQ7ObvMKWa_0C_uztYTg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Nano- and Micromechanical Parameters of AISI 316L Steel</title><source>SpringerLink Journals - AutoHoldings</source><creator>Grabco, D. ; Shikimaka, O. ; Pyrtsac, C. ; Barbos, Z. ; Popa, M. ; Prisacaru, A. ; Vilotic, D. ; Vilotic, M. ; Aleksandrov, S.</creator><creatorcontrib>Grabco, D. ; Shikimaka, O. ; Pyrtsac, C. ; Barbos, Z. ; Popa, M. ; Prisacaru, A. ; Vilotic, D. ; Vilotic, M. ; Aleksandrov, S.</creatorcontrib><description>— The nano- and micro-indentation mechanical parameters of the AISI 316L stainless steel, such as nanohardness ( Н NI ), microhardness ( H MI ), the Young modulus ( E ) , the indices of plasticity ( H / E ) and resistance ( H 3 / E 2 ), and relaxation parameters h s , h res , h e-p and their dependences on the value of P load applied to an indenter were studied. Hardness is shown to be slightly decreased in the microindentation interval ( Р = 100–500 mN) with an increase in the load, whereas it grows substantially with P decrease in the region of nanoindentation ( Р &lt; 100 mN) to exhibit the Indentation Size Effect. The major peculiarities of the deformation process were established resulting from the study of the indenter penetration character. The presence of various mechanisms of the plastic deformation is supported during the indentation of AISI 316L steel (intragranular, intergranular, and rotational), and a physical interpretation of the observed patterns is offered. The results obtained are of great importance for practice, since the compound AISI 316L belongs to medical steels being used as implants in stomatology, bone impregnation, and biotechnology.</description><identifier>ISSN: 1068-3755</identifier><identifier>EISSN: 1934-8002</identifier><identifier>DOI: 10.3103/S1068375520060071</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Engineering ; Machines ; Manufacturing ; Processes</subject><ispartof>Surface engineering and applied electrochemistry, 2020-11, Vol.56 (6), p.719-726</ispartof><rights>Allerton Press, Inc. 2020. ISSN 1068-3755, Surface Engineering and Applied Electrochemistry, 2020, Vol. 56, No. 6, pp. 719–726. © Allerton Press, Inc., 2020. Russian Text © The Author(s), 2020, published in Elektronnaya Obrabotka Materialov, 2020, No. 1, pp. 50–58.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-15ab2db3c68c5f15bc1d7e1864456c2c4e6bb3b7e3e90ece38e806994c806b5b3</citedby><cites>FETCH-LOGICAL-c325t-15ab2db3c68c5f15bc1d7e1864456c2c4e6bb3b7e3e90ece38e806994c806b5b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.3103/S1068375520060071$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.3103/S1068375520060071$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids></links><search><creatorcontrib>Grabco, D.</creatorcontrib><creatorcontrib>Shikimaka, O.</creatorcontrib><creatorcontrib>Pyrtsac, C.</creatorcontrib><creatorcontrib>Barbos, Z.</creatorcontrib><creatorcontrib>Popa, M.</creatorcontrib><creatorcontrib>Prisacaru, A.</creatorcontrib><creatorcontrib>Vilotic, D.</creatorcontrib><creatorcontrib>Vilotic, M.</creatorcontrib><creatorcontrib>Aleksandrov, S.</creatorcontrib><title>Nano- and Micromechanical Parameters of AISI 316L Steel</title><title>Surface engineering and applied electrochemistry</title><addtitle>Surf. Engin. Appl.Electrochem</addtitle><description>— The nano- and micro-indentation mechanical parameters of the AISI 316L stainless steel, such as nanohardness ( Н NI ), microhardness ( H MI ), the Young modulus ( E ) , the indices of plasticity ( H / E ) and resistance ( H 3 / E 2 ), and relaxation parameters h s , h res , h e-p and their dependences on the value of P load applied to an indenter were studied. Hardness is shown to be slightly decreased in the microindentation interval ( Р = 100–500 mN) with an increase in the load, whereas it grows substantially with P decrease in the region of nanoindentation ( Р &lt; 100 mN) to exhibit the Indentation Size Effect. The major peculiarities of the deformation process were established resulting from the study of the indenter penetration character. The presence of various mechanisms of the plastic deformation is supported during the indentation of AISI 316L steel (intragranular, intergranular, and rotational), and a physical interpretation of the observed patterns is offered. The results obtained are of great importance for practice, since the compound AISI 316L belongs to medical steels being used as implants in stomatology, bone impregnation, and biotechnology.</description><subject>Engineering</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Processes</subject><issn>1068-3755</issn><issn>1934-8002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9j0tLxDAUhYMoOI7-AHf5A9GbpEnT5TD4KNQHVNclSW-1Qx-S1IX_3gwzO8HVuXDOdzmHkGsON5KDvK05aCNzpQSABsj5CVnxQmbMAIjTdCeb7f1zchHjDkBpocSK5M92mhm1U0ufeh_mEf2nnXpvB_pqgx1xwRDp3NFNWZdUcl3RekEcLslZZ4eIV0ddk_f7u7ftI6teHsrtpmJeCrUwrqwTrZNeG686rpznbY7c6CxT2gufoXZOuhwlFoAepUEDuigyn8QpJ9eEH_6mbjEG7Jqv0I82_DQcmv3y5s_yxIgDE1N2-sDQ7ObvMKWa_0C_uztYTg</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Grabco, D.</creator><creator>Shikimaka, O.</creator><creator>Pyrtsac, C.</creator><creator>Barbos, Z.</creator><creator>Popa, M.</creator><creator>Prisacaru, A.</creator><creator>Vilotic, D.</creator><creator>Vilotic, M.</creator><creator>Aleksandrov, S.</creator><general>Pleiades Publishing</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20201101</creationdate><title>Nano- and Micromechanical Parameters of AISI 316L Steel</title><author>Grabco, D. ; Shikimaka, O. ; Pyrtsac, C. ; Barbos, Z. ; Popa, M. ; Prisacaru, A. ; Vilotic, D. ; Vilotic, M. ; Aleksandrov, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-15ab2db3c68c5f15bc1d7e1864456c2c4e6bb3b7e3e90ece38e806994c806b5b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Engineering</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grabco, D.</creatorcontrib><creatorcontrib>Shikimaka, O.</creatorcontrib><creatorcontrib>Pyrtsac, C.</creatorcontrib><creatorcontrib>Barbos, Z.</creatorcontrib><creatorcontrib>Popa, M.</creatorcontrib><creatorcontrib>Prisacaru, A.</creatorcontrib><creatorcontrib>Vilotic, D.</creatorcontrib><creatorcontrib>Vilotic, M.</creatorcontrib><creatorcontrib>Aleksandrov, S.</creatorcontrib><collection>CrossRef</collection><jtitle>Surface engineering and applied electrochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grabco, D.</au><au>Shikimaka, O.</au><au>Pyrtsac, C.</au><au>Barbos, Z.</au><au>Popa, M.</au><au>Prisacaru, A.</au><au>Vilotic, D.</au><au>Vilotic, M.</au><au>Aleksandrov, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nano- and Micromechanical Parameters of AISI 316L Steel</atitle><jtitle>Surface engineering and applied electrochemistry</jtitle><stitle>Surf. Engin. Appl.Electrochem</stitle><date>2020-11-01</date><risdate>2020</risdate><volume>56</volume><issue>6</issue><spage>719</spage><epage>726</epage><pages>719-726</pages><issn>1068-3755</issn><eissn>1934-8002</eissn><abstract>— The nano- and micro-indentation mechanical parameters of the AISI 316L stainless steel, such as nanohardness ( Н NI ), microhardness ( H MI ), the Young modulus ( E ) , the indices of plasticity ( H / E ) and resistance ( H 3 / E 2 ), and relaxation parameters h s , h res , h e-p and their dependences on the value of P load applied to an indenter were studied. Hardness is shown to be slightly decreased in the microindentation interval ( Р = 100–500 mN) with an increase in the load, whereas it grows substantially with P decrease in the region of nanoindentation ( Р &lt; 100 mN) to exhibit the Indentation Size Effect. The major peculiarities of the deformation process were established resulting from the study of the indenter penetration character. The presence of various mechanisms of the plastic deformation is supported during the indentation of AISI 316L steel (intragranular, intergranular, and rotational), and a physical interpretation of the observed patterns is offered. The results obtained are of great importance for practice, since the compound AISI 316L belongs to medical steels being used as implants in stomatology, bone impregnation, and biotechnology.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.3103/S1068375520060071</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1068-3755
ispartof Surface engineering and applied electrochemistry, 2020-11, Vol.56 (6), p.719-726
issn 1068-3755
1934-8002
language eng
recordid cdi_crossref_primary_10_3103_S1068375520060071
source SpringerLink Journals - AutoHoldings
subjects Engineering
Machines
Manufacturing
Processes
title Nano- and Micromechanical Parameters of AISI 316L Steel
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T22%3A44%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nano-%20and%20Micromechanical%20Parameters%20of%20AISI%20316L%20Steel&rft.jtitle=Surface%20engineering%20and%20applied%20electrochemistry&rft.au=Grabco,%20D.&rft.date=2020-11-01&rft.volume=56&rft.issue=6&rft.spage=719&rft.epage=726&rft.pages=719-726&rft.issn=1068-3755&rft.eissn=1934-8002&rft_id=info:doi/10.3103/S1068375520060071&rft_dat=%3Ccrossref_sprin%3E10_3103_S1068375520060071%3C/crossref_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true