An automated system for remote energy monitoring of mobile objects with electric drives

An approach to automation of remote energy monitoring of a mobile object with an electric drive is suggested. The approach is focused on solving the problem of generating statistics using analysis of energy consumption profiles. Structural solutions to arranging a system providing collection, transm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Russian electrical engineering 2015-11, Vol.86 (11), p.667-669
Hauptverfasser: Kostygov, A. M., Kychkin, A. V., Artemov, S. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 669
container_issue 11
container_start_page 667
container_title Russian electrical engineering
container_volume 86
creator Kostygov, A. M.
Kychkin, A. V.
Artemov, S. A.
description An approach to automation of remote energy monitoring of a mobile object with an electric drive is suggested. The approach is focused on solving the problem of generating statistics using analysis of energy consumption profiles. Structural solutions to arranging a system providing collection, transmission, and processing of measuring information from mobile object energy customers are considered. Based on the mixed implementation, a scheme of the measuring unit including a set of temperature, voltage, current, and speed sensors is developed. A data exchange scheme corresponding to the upper level of energy monitoring automation is developed. The control level in the scheme is established by JEVis local and global information systems with an open source. It is proposed to use a VIDA44M module remote telemetry and control line as a controller to collect data. The modules of the energy monitoring system can be supported by one server or distributed among several ones forming a cloud server. The data collection controllers communicate wirelessly with the server. The main calculation parameters of mobile object power supply, as well as the results of energy profile processing using hardware-in-the-loop simulations of the static and dynamic electric drive load, are considered. Based on the graphic profiles obtained by automated energy monitoring, one can assess the energy consumption of mobile objects, including public transport vehicles in a specific form, compare flow rates between similar objects, reveal faults or improper adjustment of the equipment, rank objects in power consumption, work out solutions to replace inefficient parts and mechanisms, predict power consumption, etc. As a result, power supply indices can be calculated and energy efficiency can be estimated; in addition, as energy audit of a transport company can be carried out and management decisions concerning energy efficiency can be suggested.
doi_str_mv 10.3103/S1068371215110073
format Article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_3103_S1068371215110073</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_3103_S1068371215110073</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2563-504bd04f8594abbdf5a260f8409d15fffed70225e3aad570c8e14b14550cbd923</originalsourceid><addsrcrecordid>eNp9kFtLAzEQhYMoWC8_wLf8gdWZXPbyWIo3KPig4uOSbCZ1S3dTklTpv3dLfRN8mjMcvmHOYewG4VYiyLtXhLKWFQrUiACVPGEzbKQqakA4nfRkFwf_nF2ktAbQpVBqxj7mIze7HAaTyfG0T5kG7kPkkYaQidNIcbXnQxj7HGI_rnjw02b7DfFg19TlxL_7_MlpM-nYd9zF_ovSFTvzZpPo-ndesveH-7fFU7F8eXxezJdFJ3QpCw3KOlC-1o0y1jqvjSjB1woah9p7T64CITRJY5yuoKsJlUWlNXTWNUJeMjze7WJIKZJvt7EfTNy3CO2hmfZPMxMjjkzaHhJRbNdhF8fpzX-gH0RxZk4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>An automated system for remote energy monitoring of mobile objects with electric drives</title><source>SpringerLink Journals - AutoHoldings</source><creator>Kostygov, A. M. ; Kychkin, A. V. ; Artemov, S. A.</creator><creatorcontrib>Kostygov, A. M. ; Kychkin, A. V. ; Artemov, S. A.</creatorcontrib><description>An approach to automation of remote energy monitoring of a mobile object with an electric drive is suggested. The approach is focused on solving the problem of generating statistics using analysis of energy consumption profiles. Structural solutions to arranging a system providing collection, transmission, and processing of measuring information from mobile object energy customers are considered. Based on the mixed implementation, a scheme of the measuring unit including a set of temperature, voltage, current, and speed sensors is developed. A data exchange scheme corresponding to the upper level of energy monitoring automation is developed. The control level in the scheme is established by JEVis local and global information systems with an open source. It is proposed to use a VIDA44M module remote telemetry and control line as a controller to collect data. The modules of the energy monitoring system can be supported by one server or distributed among several ones forming a cloud server. The data collection controllers communicate wirelessly with the server. The main calculation parameters of mobile object power supply, as well as the results of energy profile processing using hardware-in-the-loop simulations of the static and dynamic electric drive load, are considered. Based on the graphic profiles obtained by automated energy monitoring, one can assess the energy consumption of mobile objects, including public transport vehicles in a specific form, compare flow rates between similar objects, reveal faults or improper adjustment of the equipment, rank objects in power consumption, work out solutions to replace inefficient parts and mechanisms, predict power consumption, etc. As a result, power supply indices can be calculated and energy efficiency can be estimated; in addition, as energy audit of a transport company can be carried out and management decisions concerning energy efficiency can be suggested.</description><identifier>ISSN: 1068-3712</identifier><identifier>EISSN: 1934-8010</identifier><identifier>DOI: 10.3103/S1068371215110073</identifier><language>eng</language><publisher>New York: Allerton Press</publisher><subject>Engineering ; Machines ; Manufacturing ; Processes</subject><ispartof>Russian electrical engineering, 2015-11, Vol.86 (11), p.667-669</ispartof><rights>Allerton Press, Inc. 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2563-504bd04f8594abbdf5a260f8409d15fffed70225e3aad570c8e14b14550cbd923</citedby><cites>FETCH-LOGICAL-c2563-504bd04f8594abbdf5a260f8409d15fffed70225e3aad570c8e14b14550cbd923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.3103/S1068371215110073$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.3103/S1068371215110073$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Kostygov, A. M.</creatorcontrib><creatorcontrib>Kychkin, A. V.</creatorcontrib><creatorcontrib>Artemov, S. A.</creatorcontrib><title>An automated system for remote energy monitoring of mobile objects with electric drives</title><title>Russian electrical engineering</title><addtitle>Russ. Electr. Engin</addtitle><description>An approach to automation of remote energy monitoring of a mobile object with an electric drive is suggested. The approach is focused on solving the problem of generating statistics using analysis of energy consumption profiles. Structural solutions to arranging a system providing collection, transmission, and processing of measuring information from mobile object energy customers are considered. Based on the mixed implementation, a scheme of the measuring unit including a set of temperature, voltage, current, and speed sensors is developed. A data exchange scheme corresponding to the upper level of energy monitoring automation is developed. The control level in the scheme is established by JEVis local and global information systems with an open source. It is proposed to use a VIDA44M module remote telemetry and control line as a controller to collect data. The modules of the energy monitoring system can be supported by one server or distributed among several ones forming a cloud server. The data collection controllers communicate wirelessly with the server. The main calculation parameters of mobile object power supply, as well as the results of energy profile processing using hardware-in-the-loop simulations of the static and dynamic electric drive load, are considered. Based on the graphic profiles obtained by automated energy monitoring, one can assess the energy consumption of mobile objects, including public transport vehicles in a specific form, compare flow rates between similar objects, reveal faults or improper adjustment of the equipment, rank objects in power consumption, work out solutions to replace inefficient parts and mechanisms, predict power consumption, etc. As a result, power supply indices can be calculated and energy efficiency can be estimated; in addition, as energy audit of a transport company can be carried out and management decisions concerning energy efficiency can be suggested.</description><subject>Engineering</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Processes</subject><issn>1068-3712</issn><issn>1934-8010</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kFtLAzEQhYMoWC8_wLf8gdWZXPbyWIo3KPig4uOSbCZ1S3dTklTpv3dLfRN8mjMcvmHOYewG4VYiyLtXhLKWFQrUiACVPGEzbKQqakA4nfRkFwf_nF2ktAbQpVBqxj7mIze7HAaTyfG0T5kG7kPkkYaQidNIcbXnQxj7HGI_rnjw02b7DfFg19TlxL_7_MlpM-nYd9zF_ovSFTvzZpPo-ndesveH-7fFU7F8eXxezJdFJ3QpCw3KOlC-1o0y1jqvjSjB1woah9p7T64CITRJY5yuoKsJlUWlNXTWNUJeMjze7WJIKZJvt7EfTNy3CO2hmfZPMxMjjkzaHhJRbNdhF8fpzX-gH0RxZk4</recordid><startdate>20151101</startdate><enddate>20151101</enddate><creator>Kostygov, A. M.</creator><creator>Kychkin, A. V.</creator><creator>Artemov, S. A.</creator><general>Allerton Press</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20151101</creationdate><title>An automated system for remote energy monitoring of mobile objects with electric drives</title><author>Kostygov, A. M. ; Kychkin, A. V. ; Artemov, S. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2563-504bd04f8594abbdf5a260f8409d15fffed70225e3aad570c8e14b14550cbd923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Engineering</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kostygov, A. M.</creatorcontrib><creatorcontrib>Kychkin, A. V.</creatorcontrib><creatorcontrib>Artemov, S. A.</creatorcontrib><collection>CrossRef</collection><jtitle>Russian electrical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kostygov, A. M.</au><au>Kychkin, A. V.</au><au>Artemov, S. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An automated system for remote energy monitoring of mobile objects with electric drives</atitle><jtitle>Russian electrical engineering</jtitle><stitle>Russ. Electr. Engin</stitle><date>2015-11-01</date><risdate>2015</risdate><volume>86</volume><issue>11</issue><spage>667</spage><epage>669</epage><pages>667-669</pages><issn>1068-3712</issn><eissn>1934-8010</eissn><abstract>An approach to automation of remote energy monitoring of a mobile object with an electric drive is suggested. The approach is focused on solving the problem of generating statistics using analysis of energy consumption profiles. Structural solutions to arranging a system providing collection, transmission, and processing of measuring information from mobile object energy customers are considered. Based on the mixed implementation, a scheme of the measuring unit including a set of temperature, voltage, current, and speed sensors is developed. A data exchange scheme corresponding to the upper level of energy monitoring automation is developed. The control level in the scheme is established by JEVis local and global information systems with an open source. It is proposed to use a VIDA44M module remote telemetry and control line as a controller to collect data. The modules of the energy monitoring system can be supported by one server or distributed among several ones forming a cloud server. The data collection controllers communicate wirelessly with the server. The main calculation parameters of mobile object power supply, as well as the results of energy profile processing using hardware-in-the-loop simulations of the static and dynamic electric drive load, are considered. Based on the graphic profiles obtained by automated energy monitoring, one can assess the energy consumption of mobile objects, including public transport vehicles in a specific form, compare flow rates between similar objects, reveal faults or improper adjustment of the equipment, rank objects in power consumption, work out solutions to replace inefficient parts and mechanisms, predict power consumption, etc. As a result, power supply indices can be calculated and energy efficiency can be estimated; in addition, as energy audit of a transport company can be carried out and management decisions concerning energy efficiency can be suggested.</abstract><cop>New York</cop><pub>Allerton Press</pub><doi>10.3103/S1068371215110073</doi><tpages>3</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1068-3712
ispartof Russian electrical engineering, 2015-11, Vol.86 (11), p.667-669
issn 1068-3712
1934-8010
language eng
recordid cdi_crossref_primary_10_3103_S1068371215110073
source SpringerLink Journals - AutoHoldings
subjects Engineering
Machines
Manufacturing
Processes
title An automated system for remote energy monitoring of mobile objects with electric drives
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T01%3A28%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20automated%20system%20for%20remote%20energy%20monitoring%20of%20mobile%20objects%20with%20electric%20drives&rft.jtitle=Russian%20electrical%20engineering&rft.au=Kostygov,%20A.%20M.&rft.date=2015-11-01&rft.volume=86&rft.issue=11&rft.spage=667&rft.epage=669&rft.pages=667-669&rft.issn=1068-3712&rft.eissn=1934-8010&rft_id=info:doi/10.3103/S1068371215110073&rft_dat=%3Ccrossref_sprin%3E10_3103_S1068371215110073%3C/crossref_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true