On the solutions of linear ordinary differential equations and Bessel-type special functions on the Levi-Civita field

Because of the disconnectedness of a non-Archimedean ordered field in the topology induced by the order, it is possible to have non-constant functions with zero derivatives everywhere. In fact the solution space of the differential equation y ′ = 0 is infinite dimensional. In this paper, we give suf...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of contemporary mathematical analysis 2015-03, Vol.50 (2), p.53-62
Hauptverfasser: Mészáros, A. R., Shamseddine, K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 62
container_issue 2
container_start_page 53
container_title Journal of contemporary mathematical analysis
container_volume 50
creator Mészáros, A. R.
Shamseddine, K.
description Because of the disconnectedness of a non-Archimedean ordered field in the topology induced by the order, it is possible to have non-constant functions with zero derivatives everywhere. In fact the solution space of the differential equation y ′ = 0 is infinite dimensional. In this paper, we give sufficient conditions for a function on an open subset of the Levi-Civita field to have zero derivative everywhere and we use the nonconstant zero-derivative functions to obtain non-analytic solutions of systems of linear ordinary differential equations with analytic coefficients. Then we use the results to introduce Bessel-type special functions on the Levi-Civita field and to study some of their properties.
doi_str_mv 10.3103/S1068362315020016
format Article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_3103_S1068362315020016</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_3103_S1068362315020016</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-774815fce47ff22a25966883dbddefc125fcfdee4f61097b89c5d7c672c0a8e53</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEqXwANz8Agb_JI5zhAooUqQegHPk2mtwFZxiJ5X69jhKb0icdqSZ-bS7CN0yeicYFfdvjEolJBespJxSJs_QgtWiIHXB5HnW2SaTf4muUtpRWmZdLNC4CXj4Apz6bhx8HxLuHe58AB1xH60POh6x9c5BhDB43WH4GfWc1MHiR0gJOjIc95mxBzMl3BjMiTXDGzh4svIHP2jsPHT2Gl043SW4Oc0l-nh-el-tSbN5eV09NMRwpQZSVYVipTNQVM5xrnlZS6mUsFtrwRnGs-csQOEko3W1VbUpbWVkxQ3VCkqxRGzmmtinFMG1--i_80kto-30t_bP33KHz52Us-ETYrvrxxjymv-UfgF_5HHb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the solutions of linear ordinary differential equations and Bessel-type special functions on the Levi-Civita field</title><source>SpringerNature Journals</source><creator>Mészáros, A. R. ; Shamseddine, K.</creator><creatorcontrib>Mészáros, A. R. ; Shamseddine, K.</creatorcontrib><description>Because of the disconnectedness of a non-Archimedean ordered field in the topology induced by the order, it is possible to have non-constant functions with zero derivatives everywhere. In fact the solution space of the differential equation y ′ = 0 is infinite dimensional. In this paper, we give sufficient conditions for a function on an open subset of the Levi-Civita field to have zero derivative everywhere and we use the nonconstant zero-derivative functions to obtain non-analytic solutions of systems of linear ordinary differential equations with analytic coefficients. Then we use the results to introduce Bessel-type special functions on the Levi-Civita field and to study some of their properties.</description><identifier>ISSN: 1068-3623</identifier><identifier>EISSN: 1934-9416</identifier><identifier>DOI: 10.3103/S1068362315020016</identifier><language>eng</language><publisher>New York: Allerton Press</publisher><subject>Differential Equations ; Mathematics ; Mathematics and Statistics</subject><ispartof>Journal of contemporary mathematical analysis, 2015-03, Vol.50 (2), p.53-62</ispartof><rights>Allerton Press, Inc. 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c288t-774815fce47ff22a25966883dbddefc125fcfdee4f61097b89c5d7c672c0a8e53</citedby><cites>FETCH-LOGICAL-c288t-774815fce47ff22a25966883dbddefc125fcfdee4f61097b89c5d7c672c0a8e53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.3103/S1068362315020016$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.3103/S1068362315020016$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Mészáros, A. R.</creatorcontrib><creatorcontrib>Shamseddine, K.</creatorcontrib><title>On the solutions of linear ordinary differential equations and Bessel-type special functions on the Levi-Civita field</title><title>Journal of contemporary mathematical analysis</title><addtitle>J. Contemp. Mathemat. Anal</addtitle><description>Because of the disconnectedness of a non-Archimedean ordered field in the topology induced by the order, it is possible to have non-constant functions with zero derivatives everywhere. In fact the solution space of the differential equation y ′ = 0 is infinite dimensional. In this paper, we give sufficient conditions for a function on an open subset of the Levi-Civita field to have zero derivative everywhere and we use the nonconstant zero-derivative functions to obtain non-analytic solutions of systems of linear ordinary differential equations with analytic coefficients. Then we use the results to introduce Bessel-type special functions on the Levi-Civita field and to study some of their properties.</description><subject>Differential Equations</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>1068-3623</issn><issn>1934-9416</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhC0EEqXwANz8Agb_JI5zhAooUqQegHPk2mtwFZxiJ5X69jhKb0icdqSZ-bS7CN0yeicYFfdvjEolJBespJxSJs_QgtWiIHXB5HnW2SaTf4muUtpRWmZdLNC4CXj4Apz6bhx8HxLuHe58AB1xH60POh6x9c5BhDB43WH4GfWc1MHiR0gJOjIc95mxBzMl3BjMiTXDGzh4svIHP2jsPHT2Gl043SW4Oc0l-nh-el-tSbN5eV09NMRwpQZSVYVipTNQVM5xrnlZS6mUsFtrwRnGs-csQOEko3W1VbUpbWVkxQ3VCkqxRGzmmtinFMG1--i_80kto-30t_bP33KHz52Us-ETYrvrxxjymv-UfgF_5HHb</recordid><startdate>20150301</startdate><enddate>20150301</enddate><creator>Mészáros, A. R.</creator><creator>Shamseddine, K.</creator><general>Allerton Press</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20150301</creationdate><title>On the solutions of linear ordinary differential equations and Bessel-type special functions on the Levi-Civita field</title><author>Mészáros, A. R. ; Shamseddine, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-774815fce47ff22a25966883dbddefc125fcfdee4f61097b89c5d7c672c0a8e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Differential Equations</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mészáros, A. R.</creatorcontrib><creatorcontrib>Shamseddine, K.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of contemporary mathematical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mészáros, A. R.</au><au>Shamseddine, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the solutions of linear ordinary differential equations and Bessel-type special functions on the Levi-Civita field</atitle><jtitle>Journal of contemporary mathematical analysis</jtitle><stitle>J. Contemp. Mathemat. Anal</stitle><date>2015-03-01</date><risdate>2015</risdate><volume>50</volume><issue>2</issue><spage>53</spage><epage>62</epage><pages>53-62</pages><issn>1068-3623</issn><eissn>1934-9416</eissn><abstract>Because of the disconnectedness of a non-Archimedean ordered field in the topology induced by the order, it is possible to have non-constant functions with zero derivatives everywhere. In fact the solution space of the differential equation y ′ = 0 is infinite dimensional. In this paper, we give sufficient conditions for a function on an open subset of the Levi-Civita field to have zero derivative everywhere and we use the nonconstant zero-derivative functions to obtain non-analytic solutions of systems of linear ordinary differential equations with analytic coefficients. Then we use the results to introduce Bessel-type special functions on the Levi-Civita field and to study some of their properties.</abstract><cop>New York</cop><pub>Allerton Press</pub><doi>10.3103/S1068362315020016</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1068-3623
ispartof Journal of contemporary mathematical analysis, 2015-03, Vol.50 (2), p.53-62
issn 1068-3623
1934-9416
language eng
recordid cdi_crossref_primary_10_3103_S1068362315020016
source SpringerNature Journals
subjects Differential Equations
Mathematics
Mathematics and Statistics
title On the solutions of linear ordinary differential equations and Bessel-type special functions on the Levi-Civita field
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T18%3A28%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20solutions%20of%20linear%20ordinary%20differential%20equations%20and%20Bessel-type%20special%20functions%20on%20the%20Levi-Civita%20field&rft.jtitle=Journal%20of%20contemporary%20mathematical%20analysis&rft.au=M%C3%A9sz%C3%A1ros,%20A.%20R.&rft.date=2015-03-01&rft.volume=50&rft.issue=2&rft.spage=53&rft.epage=62&rft.pages=53-62&rft.issn=1068-3623&rft.eissn=1934-9416&rft_id=info:doi/10.3103/S1068362315020016&rft_dat=%3Ccrossref_sprin%3E10_3103_S1068362315020016%3C/crossref_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true