Relative rotation and variational inequalities
We introduce the notion of relative rotation of a multi-valued vector field generated by a monotone-type operator and obtain lower bounds for the number of solutions of variational inequalities. We establish conditions of topological nature that guarantee the strong convergence of the Galyorkin meth...
Gespeichert in:
Veröffentlicht in: | Russian mathematics 2011-06, Vol.55 (6), p.37-45 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 45 |
---|---|
container_issue | 6 |
container_start_page | 37 |
container_title | Russian mathematics |
container_volume | 55 |
creator | Klimov, V. S. Dem’yankov, N. A. |
description | We introduce the notion of relative rotation of a multi-valued vector field generated by a monotone-type operator and obtain lower bounds for the number of solutions of variational inequalities. We establish conditions of topological nature that guarantee the strong convergence of the Galyorkin method and the penalty method. |
doi_str_mv | 10.3103/S1066369X11060065 |
format | Article |
fullrecord | <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_3103_S1066369X11060065</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_3103_S1066369X11060065</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-e8e5a90323f98e91990e790eea3d9af6772f3068f21281c6d4ef2e557eb211bf3</originalsourceid><addsrcrecordid>eNp9j91KAzEQhYMoWKsP4N2-wNaZZJNNLqX4BwWhVehdSHcnkrLuarIt-Pam1jvBi2G-4cw5cBi7RpgJBHGzQlBKKLPGDABKnrAJGlGVGmF9mjnL5UE_ZxcpbQGk4pWasNmSOjeGPRVxGDMMfeH6tti7GH4u1xWhp8-d68IYKF2yM--6RFe_e8pe7-9e5o_l4vnhaX67KBuu9ViSJukMCC680WTQGKA6DznRGudVXXMvQGnPkWtsVFuR5yRlTRuOuPFiyvCY28QhpUjefsTw7uKXRbCHwvZP4ezhR0_Kv_0bRbsddjE3SP-YvgF8S1fg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Relative rotation and variational inequalities</title><source>SpringerLink Journals - AutoHoldings</source><creator>Klimov, V. S. ; Dem’yankov, N. A.</creator><creatorcontrib>Klimov, V. S. ; Dem’yankov, N. A.</creatorcontrib><description>We introduce the notion of relative rotation of a multi-valued vector field generated by a monotone-type operator and obtain lower bounds for the number of solutions of variational inequalities. We establish conditions of topological nature that guarantee the strong convergence of the Galyorkin method and the penalty method.</description><identifier>ISSN: 1066-369X</identifier><identifier>EISSN: 1934-810X</identifier><identifier>DOI: 10.3103/S1066369X11060065</identifier><language>eng</language><publisher>Heidelberg: Allerton Press, Inc</publisher><subject>Mathematics ; Mathematics and Statistics</subject><ispartof>Russian mathematics, 2011-06, Vol.55 (6), p.37-45</ispartof><rights>Allerton Press, Inc. 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c288t-e8e5a90323f98e91990e790eea3d9af6772f3068f21281c6d4ef2e557eb211bf3</citedby><cites>FETCH-LOGICAL-c288t-e8e5a90323f98e91990e790eea3d9af6772f3068f21281c6d4ef2e557eb211bf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.3103/S1066369X11060065$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.3103/S1066369X11060065$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Klimov, V. S.</creatorcontrib><creatorcontrib>Dem’yankov, N. A.</creatorcontrib><title>Relative rotation and variational inequalities</title><title>Russian mathematics</title><addtitle>Russ Math</addtitle><description>We introduce the notion of relative rotation of a multi-valued vector field generated by a monotone-type operator and obtain lower bounds for the number of solutions of variational inequalities. We establish conditions of topological nature that guarantee the strong convergence of the Galyorkin method and the penalty method.</description><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>1066-369X</issn><issn>1934-810X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9j91KAzEQhYMoWKsP4N2-wNaZZJNNLqX4BwWhVehdSHcnkrLuarIt-Pam1jvBi2G-4cw5cBi7RpgJBHGzQlBKKLPGDABKnrAJGlGVGmF9mjnL5UE_ZxcpbQGk4pWasNmSOjeGPRVxGDMMfeH6tti7GH4u1xWhp8-d68IYKF2yM--6RFe_e8pe7-9e5o_l4vnhaX67KBuu9ViSJukMCC680WTQGKA6DznRGudVXXMvQGnPkWtsVFuR5yRlTRuOuPFiyvCY28QhpUjefsTw7uKXRbCHwvZP4ezhR0_Kv_0bRbsddjE3SP-YvgF8S1fg</recordid><startdate>20110601</startdate><enddate>20110601</enddate><creator>Klimov, V. S.</creator><creator>Dem’yankov, N. A.</creator><general>Allerton Press, Inc</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20110601</creationdate><title>Relative rotation and variational inequalities</title><author>Klimov, V. S. ; Dem’yankov, N. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-e8e5a90323f98e91990e790eea3d9af6772f3068f21281c6d4ef2e557eb211bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Klimov, V. S.</creatorcontrib><creatorcontrib>Dem’yankov, N. A.</creatorcontrib><collection>CrossRef</collection><jtitle>Russian mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Klimov, V. S.</au><au>Dem’yankov, N. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Relative rotation and variational inequalities</atitle><jtitle>Russian mathematics</jtitle><stitle>Russ Math</stitle><date>2011-06-01</date><risdate>2011</risdate><volume>55</volume><issue>6</issue><spage>37</spage><epage>45</epage><pages>37-45</pages><issn>1066-369X</issn><eissn>1934-810X</eissn><abstract>We introduce the notion of relative rotation of a multi-valued vector field generated by a monotone-type operator and obtain lower bounds for the number of solutions of variational inequalities. We establish conditions of topological nature that guarantee the strong convergence of the Galyorkin method and the penalty method.</abstract><cop>Heidelberg</cop><pub>Allerton Press, Inc</pub><doi>10.3103/S1066369X11060065</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1066-369X |
ispartof | Russian mathematics, 2011-06, Vol.55 (6), p.37-45 |
issn | 1066-369X 1934-810X |
language | eng |
recordid | cdi_crossref_primary_10_3103_S1066369X11060065 |
source | SpringerLink Journals - AutoHoldings |
subjects | Mathematics Mathematics and Statistics |
title | Relative rotation and variational inequalities |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T04%3A55%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Relative%20rotation%20and%20variational%20inequalities&rft.jtitle=Russian%20mathematics&rft.au=Klimov,%20V.%20S.&rft.date=2011-06-01&rft.volume=55&rft.issue=6&rft.spage=37&rft.epage=45&rft.pages=37-45&rft.issn=1066-369X&rft.eissn=1934-810X&rft_id=info:doi/10.3103/S1066369X11060065&rft_dat=%3Ccrossref_sprin%3E10_3103_S1066369X11060065%3C/crossref_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |