Relative rotation and variational inequalities

We introduce the notion of relative rotation of a multi-valued vector field generated by a monotone-type operator and obtain lower bounds for the number of solutions of variational inequalities. We establish conditions of topological nature that guarantee the strong convergence of the Galyorkin meth...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Russian mathematics 2011-06, Vol.55 (6), p.37-45
Hauptverfasser: Klimov, V. S., Dem’yankov, N. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 45
container_issue 6
container_start_page 37
container_title Russian mathematics
container_volume 55
creator Klimov, V. S.
Dem’yankov, N. A.
description We introduce the notion of relative rotation of a multi-valued vector field generated by a monotone-type operator and obtain lower bounds for the number of solutions of variational inequalities. We establish conditions of topological nature that guarantee the strong convergence of the Galyorkin method and the penalty method.
doi_str_mv 10.3103/S1066369X11060065
format Article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_3103_S1066369X11060065</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_3103_S1066369X11060065</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-e8e5a90323f98e91990e790eea3d9af6772f3068f21281c6d4ef2e557eb211bf3</originalsourceid><addsrcrecordid>eNp9j91KAzEQhYMoWKsP4N2-wNaZZJNNLqX4BwWhVehdSHcnkrLuarIt-Pam1jvBi2G-4cw5cBi7RpgJBHGzQlBKKLPGDABKnrAJGlGVGmF9mjnL5UE_ZxcpbQGk4pWasNmSOjeGPRVxGDMMfeH6tti7GH4u1xWhp8-d68IYKF2yM--6RFe_e8pe7-9e5o_l4vnhaX67KBuu9ViSJukMCC680WTQGKA6DznRGudVXXMvQGnPkWtsVFuR5yRlTRuOuPFiyvCY28QhpUjefsTw7uKXRbCHwvZP4ezhR0_Kv_0bRbsddjE3SP-YvgF8S1fg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Relative rotation and variational inequalities</title><source>SpringerLink Journals - AutoHoldings</source><creator>Klimov, V. S. ; Dem’yankov, N. A.</creator><creatorcontrib>Klimov, V. S. ; Dem’yankov, N. A.</creatorcontrib><description>We introduce the notion of relative rotation of a multi-valued vector field generated by a monotone-type operator and obtain lower bounds for the number of solutions of variational inequalities. We establish conditions of topological nature that guarantee the strong convergence of the Galyorkin method and the penalty method.</description><identifier>ISSN: 1066-369X</identifier><identifier>EISSN: 1934-810X</identifier><identifier>DOI: 10.3103/S1066369X11060065</identifier><language>eng</language><publisher>Heidelberg: Allerton Press, Inc</publisher><subject>Mathematics ; Mathematics and Statistics</subject><ispartof>Russian mathematics, 2011-06, Vol.55 (6), p.37-45</ispartof><rights>Allerton Press, Inc. 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c288t-e8e5a90323f98e91990e790eea3d9af6772f3068f21281c6d4ef2e557eb211bf3</citedby><cites>FETCH-LOGICAL-c288t-e8e5a90323f98e91990e790eea3d9af6772f3068f21281c6d4ef2e557eb211bf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.3103/S1066369X11060065$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.3103/S1066369X11060065$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Klimov, V. S.</creatorcontrib><creatorcontrib>Dem’yankov, N. A.</creatorcontrib><title>Relative rotation and variational inequalities</title><title>Russian mathematics</title><addtitle>Russ Math</addtitle><description>We introduce the notion of relative rotation of a multi-valued vector field generated by a monotone-type operator and obtain lower bounds for the number of solutions of variational inequalities. We establish conditions of topological nature that guarantee the strong convergence of the Galyorkin method and the penalty method.</description><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>1066-369X</issn><issn>1934-810X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9j91KAzEQhYMoWKsP4N2-wNaZZJNNLqX4BwWhVehdSHcnkrLuarIt-Pam1jvBi2G-4cw5cBi7RpgJBHGzQlBKKLPGDABKnrAJGlGVGmF9mjnL5UE_ZxcpbQGk4pWasNmSOjeGPRVxGDMMfeH6tti7GH4u1xWhp8-d68IYKF2yM--6RFe_e8pe7-9e5o_l4vnhaX67KBuu9ViSJukMCC680WTQGKA6DznRGudVXXMvQGnPkWtsVFuR5yRlTRuOuPFiyvCY28QhpUjefsTw7uKXRbCHwvZP4ezhR0_Kv_0bRbsddjE3SP-YvgF8S1fg</recordid><startdate>20110601</startdate><enddate>20110601</enddate><creator>Klimov, V. S.</creator><creator>Dem’yankov, N. A.</creator><general>Allerton Press, Inc</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20110601</creationdate><title>Relative rotation and variational inequalities</title><author>Klimov, V. S. ; Dem’yankov, N. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-e8e5a90323f98e91990e790eea3d9af6772f3068f21281c6d4ef2e557eb211bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Klimov, V. S.</creatorcontrib><creatorcontrib>Dem’yankov, N. A.</creatorcontrib><collection>CrossRef</collection><jtitle>Russian mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Klimov, V. S.</au><au>Dem’yankov, N. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Relative rotation and variational inequalities</atitle><jtitle>Russian mathematics</jtitle><stitle>Russ Math</stitle><date>2011-06-01</date><risdate>2011</risdate><volume>55</volume><issue>6</issue><spage>37</spage><epage>45</epage><pages>37-45</pages><issn>1066-369X</issn><eissn>1934-810X</eissn><abstract>We introduce the notion of relative rotation of a multi-valued vector field generated by a monotone-type operator and obtain lower bounds for the number of solutions of variational inequalities. We establish conditions of topological nature that guarantee the strong convergence of the Galyorkin method and the penalty method.</abstract><cop>Heidelberg</cop><pub>Allerton Press, Inc</pub><doi>10.3103/S1066369X11060065</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1066-369X
ispartof Russian mathematics, 2011-06, Vol.55 (6), p.37-45
issn 1066-369X
1934-810X
language eng
recordid cdi_crossref_primary_10_3103_S1066369X11060065
source SpringerLink Journals - AutoHoldings
subjects Mathematics
Mathematics and Statistics
title Relative rotation and variational inequalities
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T04%3A55%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Relative%20rotation%20and%20variational%20inequalities&rft.jtitle=Russian%20mathematics&rft.au=Klimov,%20V.%20S.&rft.date=2011-06-01&rft.volume=55&rft.issue=6&rft.spage=37&rft.epage=45&rft.pages=37-45&rft.issn=1066-369X&rft.eissn=1934-810X&rft_id=info:doi/10.3103/S1066369X11060065&rft_dat=%3Ccrossref_sprin%3E10_3103_S1066369X11060065%3C/crossref_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true