Homogeneously simple associative algebras

We prove that every finite-dimensional homogeneously simple associative algebra over an algebraically closed field is representable as the product of a full matrix algebra and a graded field.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Russian mathematics 2011-05, Vol.55 (5), p.14-18
1. Verfasser: Koreshkov, N. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 18
container_issue 5
container_start_page 14
container_title Russian mathematics
container_volume 55
creator Koreshkov, N. A.
description We prove that every finite-dimensional homogeneously simple associative algebra over an algebraically closed field is representable as the product of a full matrix algebra and a graded field.
doi_str_mv 10.3103/S1066369X11050033
format Article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_3103_S1066369X11050033</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_3103_S1066369X11050033</sourcerecordid><originalsourceid>FETCH-LOGICAL-c240t-5e3e94ba88309527575c5593e1bac0b22286c85c0ea24d85a8ab63612b75fbad3</originalsourceid><addsrcrecordid>eNp9j0FLAzEQhYMoWKs_wFuvHlYnySabHKWoFQoeVOhtmaSzy5bdTUlaof_elPYmeJoH733De4zdc3iUHOTTJwetpbYrzkEBSHnBJtzKsjAcVpdZZ7s4-tfsJqUNgNKi1BP2sAhDaGmksE_9YZa6YdvTDFMKvsNd95N135KLmG7ZVYN9orvznbLv15ev-aJYfry9z5-XhRcl7ApFkmzp0BgJVolKVcorZSVxhx6cEMJob5QHQlGujUKDLhfnwlWqcbiWU8ZPf30MKUVq6m3sBoyHmkN93Fr_2ZoZcWJSzo4txXoT9nHMNf-BfgFE3lXM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Homogeneously simple associative algebras</title><source>Springer Online Journals</source><creator>Koreshkov, N. A.</creator><creatorcontrib>Koreshkov, N. A.</creatorcontrib><description>We prove that every finite-dimensional homogeneously simple associative algebra over an algebraically closed field is representable as the product of a full matrix algebra and a graded field.</description><identifier>ISSN: 1066-369X</identifier><identifier>EISSN: 1934-810X</identifier><identifier>DOI: 10.3103/S1066369X11050033</identifier><language>eng</language><publisher>Heidelberg: Allerton Press, Inc</publisher><subject>Mathematics ; Mathematics and Statistics</subject><ispartof>Russian mathematics, 2011-05, Vol.55 (5), p.14-18</ispartof><rights>Allerton Press, Inc. 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c240t-5e3e94ba88309527575c5593e1bac0b22286c85c0ea24d85a8ab63612b75fbad3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.3103/S1066369X11050033$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.3103/S1066369X11050033$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Koreshkov, N. A.</creatorcontrib><title>Homogeneously simple associative algebras</title><title>Russian mathematics</title><addtitle>Russ Math</addtitle><description>We prove that every finite-dimensional homogeneously simple associative algebra over an algebraically closed field is representable as the product of a full matrix algebra and a graded field.</description><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>1066-369X</issn><issn>1934-810X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9j0FLAzEQhYMoWKs_wFuvHlYnySabHKWoFQoeVOhtmaSzy5bdTUlaof_elPYmeJoH733De4zdc3iUHOTTJwetpbYrzkEBSHnBJtzKsjAcVpdZZ7s4-tfsJqUNgNKi1BP2sAhDaGmksE_9YZa6YdvTDFMKvsNd95N135KLmG7ZVYN9orvznbLv15ev-aJYfry9z5-XhRcl7ApFkmzp0BgJVolKVcorZSVxhx6cEMJob5QHQlGujUKDLhfnwlWqcbiWU8ZPf30MKUVq6m3sBoyHmkN93Fr_2ZoZcWJSzo4txXoT9nHMNf-BfgFE3lXM</recordid><startdate>20110501</startdate><enddate>20110501</enddate><creator>Koreshkov, N. A.</creator><general>Allerton Press, Inc</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20110501</creationdate><title>Homogeneously simple associative algebras</title><author>Koreshkov, N. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c240t-5e3e94ba88309527575c5593e1bac0b22286c85c0ea24d85a8ab63612b75fbad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koreshkov, N. A.</creatorcontrib><collection>CrossRef</collection><jtitle>Russian mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koreshkov, N. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Homogeneously simple associative algebras</atitle><jtitle>Russian mathematics</jtitle><stitle>Russ Math</stitle><date>2011-05-01</date><risdate>2011</risdate><volume>55</volume><issue>5</issue><spage>14</spage><epage>18</epage><pages>14-18</pages><issn>1066-369X</issn><eissn>1934-810X</eissn><abstract>We prove that every finite-dimensional homogeneously simple associative algebra over an algebraically closed field is representable as the product of a full matrix algebra and a graded field.</abstract><cop>Heidelberg</cop><pub>Allerton Press, Inc</pub><doi>10.3103/S1066369X11050033</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1066-369X
ispartof Russian mathematics, 2011-05, Vol.55 (5), p.14-18
issn 1066-369X
1934-810X
language eng
recordid cdi_crossref_primary_10_3103_S1066369X11050033
source Springer Online Journals
subjects Mathematics
Mathematics and Statistics
title Homogeneously simple associative algebras
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T11%3A21%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Homogeneously%20simple%20associative%20algebras&rft.jtitle=Russian%20mathematics&rft.au=Koreshkov,%20N.%20A.&rft.date=2011-05-01&rft.volume=55&rft.issue=5&rft.spage=14&rft.epage=18&rft.pages=14-18&rft.issn=1066-369X&rft.eissn=1934-810X&rft_id=info:doi/10.3103/S1066369X11050033&rft_dat=%3Ccrossref_sprin%3E10_3103_S1066369X11050033%3C/crossref_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true