Static statement of the stability problem under creep

In technological processes of rod bending, the critical time is determined [1] by the criterion of unbounded increase A → ∞ in the bent axis amplitude, which is equivalent to the requirement A ≫ A 0 , where A 0 is value of the amplitude at the initial time t = 0. In this case, the mathematical model...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mechanics of solids 2008-04, Vol.43 (2), p.277-282
1. Verfasser: Romanov, K. I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 282
container_issue 2
container_start_page 277
container_title Mechanics of solids
container_volume 43
creator Romanov, K. I.
description In technological processes of rod bending, the critical time is determined [1] by the criterion of unbounded increase A → ∞ in the bent axis amplitude, which is equivalent to the requirement A ≫ A 0 , where A 0 is value of the amplitude at the initial time t = 0. In this case, the mathematical models of the process of buckling of rods and plates [2] are constructed in the framework of the theory of small displacements. This contradiction can be removed by the assumption that the critical state is realized for deflections A of the order of several A 0 , i.e., at the time instant corresponding to a sharp increase in displacements. Naturally, this assumption is of local character, because the instant of the transition to the accelerated increase in deflections depends on specific conditions such as, for example, the support conditions, the creep coefficient, the type of the system imperfectness, the value of A 0 , and the eccentricity of the load application. In what follows, we show that, in the case of longitudinal bending (buckling), the time instant directly preceding the beginning of the catastrophic increase in deflections can be determined by the variation in the phase volume of the system.
doi_str_mv 10.3103/S0025654408020143
format Article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_3103_S0025654408020143</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_3103_S0025654408020143</sourcerecordid><originalsourceid>FETCH-LOGICAL-c240t-28e2a98930880aed1a2ab989f38cd95c8624106878d5118f7080d5c509ba2e103</originalsourceid><addsrcrecordid>eNp9j8tOwzAQRS1EJULLB7DzDwTGr8ReooqXVIlFYR05zgRS5SXbXfTvcVR2SF1dzdy5o3sIuWfwIBiIxz0AV4WSEjRwYFJckYwZIfPSiOKaZIudL_4NuQ3hAFAA5ywjah9t7BwNSXDAMdKppfEHl0Xd9V080dlPdY8DPY4Neuo84rwhq9b2Ae_-dE2-Xp4_t2_57uP1ffu0yx2XEHOukVujjQCtwWLDLLd1mluhXWOU0wWXDApd6kYxptsylW-UU2BqyzFhrQk7_3V-CsFjW82-G6w_VQyqhbv6x50y_JwJ6Xb8Rl8dpqMfU80LoV8HjVhS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Static statement of the stability problem under creep</title><source>SpringerLink Journals - AutoHoldings</source><creator>Romanov, K. I.</creator><creatorcontrib>Romanov, K. I.</creatorcontrib><description>In technological processes of rod bending, the critical time is determined [1] by the criterion of unbounded increase A → ∞ in the bent axis amplitude, which is equivalent to the requirement A ≫ A 0 , where A 0 is value of the amplitude at the initial time t = 0. In this case, the mathematical models of the process of buckling of rods and plates [2] are constructed in the framework of the theory of small displacements. This contradiction can be removed by the assumption that the critical state is realized for deflections A of the order of several A 0 , i.e., at the time instant corresponding to a sharp increase in displacements. Naturally, this assumption is of local character, because the instant of the transition to the accelerated increase in deflections depends on specific conditions such as, for example, the support conditions, the creep coefficient, the type of the system imperfectness, the value of A 0 , and the eccentricity of the load application. In what follows, we show that, in the case of longitudinal bending (buckling), the time instant directly preceding the beginning of the catastrophic increase in deflections can be determined by the variation in the phase volume of the system.</description><identifier>ISSN: 0025-6544</identifier><identifier>EISSN: 1934-7936</identifier><identifier>DOI: 10.3103/S0025654408020143</identifier><language>eng</language><publisher>Heidelberg: Allerton Press, Inc</publisher><subject>Classical Mechanics ; Physics ; Physics and Astronomy</subject><ispartof>Mechanics of solids, 2008-04, Vol.43 (2), p.277-282</ispartof><rights>Allerton Press, Inc. 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c240t-28e2a98930880aed1a2ab989f38cd95c8624106878d5118f7080d5c509ba2e103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.3103/S0025654408020143$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.3103/S0025654408020143$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Romanov, K. I.</creatorcontrib><title>Static statement of the stability problem under creep</title><title>Mechanics of solids</title><addtitle>Mech. Solids</addtitle><description>In technological processes of rod bending, the critical time is determined [1] by the criterion of unbounded increase A → ∞ in the bent axis amplitude, which is equivalent to the requirement A ≫ A 0 , where A 0 is value of the amplitude at the initial time t = 0. In this case, the mathematical models of the process of buckling of rods and plates [2] are constructed in the framework of the theory of small displacements. This contradiction can be removed by the assumption that the critical state is realized for deflections A of the order of several A 0 , i.e., at the time instant corresponding to a sharp increase in displacements. Naturally, this assumption is of local character, because the instant of the transition to the accelerated increase in deflections depends on specific conditions such as, for example, the support conditions, the creep coefficient, the type of the system imperfectness, the value of A 0 , and the eccentricity of the load application. In what follows, we show that, in the case of longitudinal bending (buckling), the time instant directly preceding the beginning of the catastrophic increase in deflections can be determined by the variation in the phase volume of the system.</description><subject>Classical Mechanics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><issn>0025-6544</issn><issn>1934-7936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9j8tOwzAQRS1EJULLB7DzDwTGr8ReooqXVIlFYR05zgRS5SXbXfTvcVR2SF1dzdy5o3sIuWfwIBiIxz0AV4WSEjRwYFJckYwZIfPSiOKaZIudL_4NuQ3hAFAA5ywjah9t7BwNSXDAMdKppfEHl0Xd9V080dlPdY8DPY4Neuo84rwhq9b2Ae_-dE2-Xp4_t2_57uP1ffu0yx2XEHOukVujjQCtwWLDLLd1mluhXWOU0wWXDApd6kYxptsylW-UU2BqyzFhrQk7_3V-CsFjW82-G6w_VQyqhbv6x50y_JwJ6Xb8Rl8dpqMfU80LoV8HjVhS</recordid><startdate>20080401</startdate><enddate>20080401</enddate><creator>Romanov, K. I.</creator><general>Allerton Press, Inc</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20080401</creationdate><title>Static statement of the stability problem under creep</title><author>Romanov, K. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c240t-28e2a98930880aed1a2ab989f38cd95c8624106878d5118f7080d5c509ba2e103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Classical Mechanics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Romanov, K. I.</creatorcontrib><collection>CrossRef</collection><jtitle>Mechanics of solids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Romanov, K. I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Static statement of the stability problem under creep</atitle><jtitle>Mechanics of solids</jtitle><stitle>Mech. Solids</stitle><date>2008-04-01</date><risdate>2008</risdate><volume>43</volume><issue>2</issue><spage>277</spage><epage>282</epage><pages>277-282</pages><issn>0025-6544</issn><eissn>1934-7936</eissn><abstract>In technological processes of rod bending, the critical time is determined [1] by the criterion of unbounded increase A → ∞ in the bent axis amplitude, which is equivalent to the requirement A ≫ A 0 , where A 0 is value of the amplitude at the initial time t = 0. In this case, the mathematical models of the process of buckling of rods and plates [2] are constructed in the framework of the theory of small displacements. This contradiction can be removed by the assumption that the critical state is realized for deflections A of the order of several A 0 , i.e., at the time instant corresponding to a sharp increase in displacements. Naturally, this assumption is of local character, because the instant of the transition to the accelerated increase in deflections depends on specific conditions such as, for example, the support conditions, the creep coefficient, the type of the system imperfectness, the value of A 0 , and the eccentricity of the load application. In what follows, we show that, in the case of longitudinal bending (buckling), the time instant directly preceding the beginning of the catastrophic increase in deflections can be determined by the variation in the phase volume of the system.</abstract><cop>Heidelberg</cop><pub>Allerton Press, Inc</pub><doi>10.3103/S0025654408020143</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0025-6544
ispartof Mechanics of solids, 2008-04, Vol.43 (2), p.277-282
issn 0025-6544
1934-7936
language eng
recordid cdi_crossref_primary_10_3103_S0025654408020143
source SpringerLink Journals - AutoHoldings
subjects Classical Mechanics
Physics
Physics and Astronomy
title Static statement of the stability problem under creep
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T19%3A43%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Static%20statement%20of%20the%20stability%20problem%20under%20creep&rft.jtitle=Mechanics%20of%20solids&rft.au=Romanov,%20K.%20I.&rft.date=2008-04-01&rft.volume=43&rft.issue=2&rft.spage=277&rft.epage=282&rft.pages=277-282&rft.issn=0025-6544&rft.eissn=1934-7936&rft_id=info:doi/10.3103/S0025654408020143&rft_dat=%3Ccrossref_sprin%3E10_3103_S0025654408020143%3C/crossref_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true