Operator Differentiable Functions
We study the Banach *-algebra C1QP(I) of C1-functions on the compact interval I such that the corresponding Hilbert space operator function T → f(T), for T = T* and sp(T) ⊂ I, is Fréchet differentiable. If f(x) = ∫ eitx f^(t)dt we know that the differential is given by the formula dfT(S) = ∫-∞∞ ∫01...
Gespeichert in:
Veröffentlicht in: | Publications of the Research Institute for Mathematical Sciences 2000, Vol.36 (1), p.139-157 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 157 |
---|---|
container_issue | 1 |
container_start_page | 139 |
container_title | Publications of the Research Institute for Mathematical Sciences |
container_volume | 36 |
creator | Pedersen, Gert |
description | We study the Banach *-algebra C1QP(I) of C1-functions on the compact interval I such that the corresponding Hilbert space operator function T → f(T), for T = T* and sp(T) ⊂ I, is Fréchet differentiable. If f(x) = ∫ eitx f^(t)dt we know that the differential is given by the formula dfT(S) = ∫-∞∞ ∫01 UstSU(1-s)t dsf'^(t) dt, where Ut = exp(itT). Functions of this type are dense in C1QP(I), and C2(I) ⊂ C1QP(I) ⊂ C1(I), so several classical results can be deduced. In particular we show that if T ∈ D(δ), where δ is the generator of a one-parameter group of *-automorphisms of a C*-algebra A (or just a closed *-derivation in A), then f(T) ∈ D(δ) for every f in C1QP(I), sp(T) ⊂ I, and δ(f(T)) = dfT(δ(T)). |
doi_str_mv | 10.2977/prims/1195143229 |
format | Article |
fullrecord | <record><control><sourceid>ems_cross</sourceid><recordid>TN_cdi_crossref_primary_10_2977_prims_1195143229</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_2977_prims_1195143229</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4049-3552fecaeadab7ff75d1982c99d0afc02216e35375d74605044f3f8a930151083</originalsourceid><addsrcrecordid>eNp1jzFPwzAQhS0EEqFlZyw7oXf22c6NqFBAqtSFzpHr2FKqklR2OvDvSSkSE9PTPb13ep8QdwiPkq2dH1L7meeIrJGUlHwhCjRGlcTSXIoCQFGpFVbX4ibnHQBpllSI-_UhJDf0afbcxhhS6IbWbfdhtjx2fmj7Lk_FVXT7HG5_dSI2y5ePxVu5Wr--L55WpScgLpXWMgbvgmvc1sZodYNcSc_cgIsepEQTlFajb8mABqKoYuVYAWqESk0EnP_61OecQqxPSC591Qj1CfHnzvUf4lh5OFfC6O_6Y-rGgf_HvwE33FJG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Operator Differentiable Functions</title><source>J-STAGE Free</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>European Mathematical Society Publishing House</source><creator>Pedersen, Gert</creator><creatorcontrib>Pedersen, Gert</creatorcontrib><description>We study the Banach *-algebra C1QP(I) of C1-functions on the compact interval I such that the corresponding Hilbert space operator function T → f(T), for T = T* and sp(T) ⊂ I, is Fréchet differentiable. If f(x) = ∫ eitx f^(t)dt we know that the differential is given by the formula dfT(S) = ∫-∞∞ ∫01 UstSU(1-s)t dsf'^(t) dt, where Ut = exp(itT). Functions of this type are dense in C1QP(I), and C2(I) ⊂ C1QP(I) ⊂ C1(I), so several classical results can be deduced. In particular we show that if T ∈ D(δ), where δ is the generator of a one-parameter group of *-automorphisms of a C*-algebra A (or just a closed *-derivation in A), then f(T) ∈ D(δ) for every f in C1QP(I), sp(T) ⊂ I, and δ(f(T)) = dfT(δ(T)).</description><identifier>ISSN: 0034-5318</identifier><identifier>EISSN: 1663-4926</identifier><identifier>DOI: 10.2977/prims/1195143229</identifier><language>eng</language><publisher>Zuerich, Switzerland: European Mathematical Society Publishing House</publisher><subject>Functional analysis ; Operator theory</subject><ispartof>Publications of the Research Institute for Mathematical Sciences, 2000, Vol.36 (1), p.139-157</ispartof><rights>Research Institute for Mathematical Sciences, Kyoto University</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4049-3552fecaeadab7ff75d1982c99d0afc02216e35375d74605044f3f8a930151083</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,24032,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Pedersen, Gert</creatorcontrib><title>Operator Differentiable Functions</title><title>Publications of the Research Institute for Mathematical Sciences</title><addtitle>Publ. Res. Inst. Math. Sci</addtitle><description>We study the Banach *-algebra C1QP(I) of C1-functions on the compact interval I such that the corresponding Hilbert space operator function T → f(T), for T = T* and sp(T) ⊂ I, is Fréchet differentiable. If f(x) = ∫ eitx f^(t)dt we know that the differential is given by the formula dfT(S) = ∫-∞∞ ∫01 UstSU(1-s)t dsf'^(t) dt, where Ut = exp(itT). Functions of this type are dense in C1QP(I), and C2(I) ⊂ C1QP(I) ⊂ C1(I), so several classical results can be deduced. In particular we show that if T ∈ D(δ), where δ is the generator of a one-parameter group of *-automorphisms of a C*-algebra A (or just a closed *-derivation in A), then f(T) ∈ D(δ) for every f in C1QP(I), sp(T) ⊂ I, and δ(f(T)) = dfT(δ(T)).</description><subject>Functional analysis</subject><subject>Operator theory</subject><issn>0034-5318</issn><issn>1663-4926</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNp1jzFPwzAQhS0EEqFlZyw7oXf22c6NqFBAqtSFzpHr2FKqklR2OvDvSSkSE9PTPb13ep8QdwiPkq2dH1L7meeIrJGUlHwhCjRGlcTSXIoCQFGpFVbX4ibnHQBpllSI-_UhJDf0afbcxhhS6IbWbfdhtjx2fmj7Lk_FVXT7HG5_dSI2y5ePxVu5Wr--L55WpScgLpXWMgbvgmvc1sZodYNcSc_cgIsepEQTlFajb8mABqKoYuVYAWqESk0EnP_61OecQqxPSC591Qj1CfHnzvUf4lh5OFfC6O_6Y-rGgf_HvwE33FJG</recordid><startdate>2000</startdate><enddate>2000</enddate><creator>Pedersen, Gert</creator><general>European Mathematical Society Publishing House</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2000</creationdate><title>Operator Differentiable Functions</title><author>Pedersen, Gert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4049-3552fecaeadab7ff75d1982c99d0afc02216e35375d74605044f3f8a930151083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Functional analysis</topic><topic>Operator theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pedersen, Gert</creatorcontrib><collection>CrossRef</collection><jtitle>Publications of the Research Institute for Mathematical Sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pedersen, Gert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Operator Differentiable Functions</atitle><jtitle>Publications of the Research Institute for Mathematical Sciences</jtitle><addtitle>Publ. Res. Inst. Math. Sci</addtitle><date>2000</date><risdate>2000</risdate><volume>36</volume><issue>1</issue><spage>139</spage><epage>157</epage><pages>139-157</pages><issn>0034-5318</issn><eissn>1663-4926</eissn><abstract>We study the Banach *-algebra C1QP(I) of C1-functions on the compact interval I such that the corresponding Hilbert space operator function T → f(T), for T = T* and sp(T) ⊂ I, is Fréchet differentiable. If f(x) = ∫ eitx f^(t)dt we know that the differential is given by the formula dfT(S) = ∫-∞∞ ∫01 UstSU(1-s)t dsf'^(t) dt, where Ut = exp(itT). Functions of this type are dense in C1QP(I), and C2(I) ⊂ C1QP(I) ⊂ C1(I), so several classical results can be deduced. In particular we show that if T ∈ D(δ), where δ is the generator of a one-parameter group of *-automorphisms of a C*-algebra A (or just a closed *-derivation in A), then f(T) ∈ D(δ) for every f in C1QP(I), sp(T) ⊂ I, and δ(f(T)) = dfT(δ(T)).</abstract><cop>Zuerich, Switzerland</cop><pub>European Mathematical Society Publishing House</pub><doi>10.2977/prims/1195143229</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0034-5318 |
ispartof | Publications of the Research Institute for Mathematical Sciences, 2000, Vol.36 (1), p.139-157 |
issn | 0034-5318 1663-4926 |
language | eng |
recordid | cdi_crossref_primary_10_2977_prims_1195143229 |
source | J-STAGE Free; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; European Mathematical Society Publishing House |
subjects | Functional analysis Operator theory |
title | Operator Differentiable Functions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T12%3A55%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ems_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Operator%20Differentiable%20Functions&rft.jtitle=Publications%20of%20the%20Research%20Institute%20for%20Mathematical%20Sciences&rft.au=Pedersen,%20Gert&rft.date=2000&rft.volume=36&rft.issue=1&rft.spage=139&rft.epage=157&rft.pages=139-157&rft.issn=0034-5318&rft.eissn=1663-4926&rft_id=info:doi/10.2977/prims/1195143229&rft_dat=%3Cems_cross%3E10_2977_prims_1195143229%3C/ems_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |