The Multiple Zeta Value Algebra and the Stable Derivation Algebra
The MZV algebra is the graded algebra over Q generated by all multiple zeta values. The stable derivation algebra is a graded Lie algebra version of the Grothendieck–Teichmüller group. We shall show that there is a canonical surjective Q-linear map from the graded dual vector space of the stable der...
Gespeichert in:
Veröffentlicht in: | Publications of the Research Institute for Mathematical Sciences 2003, Vol.39 (4), p.695-720 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 720 |
---|---|
container_issue | 4 |
container_start_page | 695 |
container_title | Publications of the Research Institute for Mathematical Sciences |
container_volume | 39 |
creator | Furusho, Hidekazu |
description | The MZV algebra is the graded algebra over Q generated by all multiple zeta values. The stable derivation algebra is a graded Lie algebra version of the Grothendieck–Teichmüller group. We shall show that there is a canonical surjective Q-linear map from the graded dual vector space of the stable derivation algebra over Q to the new-zeta space, the quotient space of the sub-vector space of the MZV algebra whose grade is greater than 2 by the square of the maximal ideal. As a corollary, we get an upper-bound for the dimension of the graded piece of the MZV algebra at each weight in terms of the corresponding dimension of the graded piece of the stable derivation algebra. If some standard conjectures by Y. Ihara and P. Deligne concerning the structure of the stable derivation algebra hold, this will become a bound conjectured in Zagier’s talk at 1st European Congress of Mathematics. Via the stable derivation algebra, we can compare the new-zeta space with the l-adic Galois image Lie algebra which is associated with the Galois representation on the pro-l fundamental group of P1Q − {0, 1, ∞}. |
doi_str_mv | 10.2977/prims/1145476044 |
format | Article |
fullrecord | <record><control><sourceid>ems_cross</sourceid><recordid>TN_cdi_crossref_primary_10_2977_prims_1145476044</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_2977_prims_1145476044</sourcerecordid><originalsourceid>FETCH-LOGICAL-c516t-7a21bbeabf464d8708945325dbb78784f895f4b514518590228db59219d19ef13</originalsourceid><addsrcrecordid>eNp1kM1OwzAQhC0EEqFw5-gHINR21n_HqEBBKuJA4cAlshsbUoWksl0k3h6XgjhxWu3qm9XMIHROySXTUk43oXuPU0qBgxQE4AAVVIiqBM3EISoIqaDkFVXH6CTGNSHANYMC1cs3h--3feo2vcMvLhn8bPqtw3X_6mww2AwtTpl5TMZm4sqF7sOkbhx-iVN05E0f3dnPnKCnm-vl7LZcPMzvZvWiXHEqUikNo9Y6Yz0IaJUkSgOvGG-tlUoq8EpzD5bnAFRxTRhTrc0eqW6pdp5WE0T2f1dhjDE43-wim_DZUNLsKvjeY_NXQZZc7CUu39fjNgzZ4P_4FzVgXLY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Multiple Zeta Value Algebra and the Stable Derivation Algebra</title><source>J-STAGE Free</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>European Mathematical Society Publishing House</source><creator>Furusho, Hidekazu</creator><creatorcontrib>Furusho, Hidekazu</creatorcontrib><description>The MZV algebra is the graded algebra over Q generated by all multiple zeta values. The stable derivation algebra is a graded Lie algebra version of the Grothendieck–Teichmüller group. We shall show that there is a canonical surjective Q-linear map from the graded dual vector space of the stable derivation algebra over Q to the new-zeta space, the quotient space of the sub-vector space of the MZV algebra whose grade is greater than 2 by the square of the maximal ideal. As a corollary, we get an upper-bound for the dimension of the graded piece of the MZV algebra at each weight in terms of the corresponding dimension of the graded piece of the stable derivation algebra. If some standard conjectures by Y. Ihara and P. Deligne concerning the structure of the stable derivation algebra hold, this will become a bound conjectured in Zagier’s talk at 1st European Congress of Mathematics. Via the stable derivation algebra, we can compare the new-zeta space with the l-adic Galois image Lie algebra which is associated with the Galois representation on the pro-l fundamental group of P1Q − {0, 1, ∞}.</description><identifier>ISSN: 0034-5318</identifier><identifier>EISSN: 1663-4926</identifier><identifier>DOI: 10.2977/prims/1145476044</identifier><language>eng</language><publisher>Zuerich, Switzerland: European Mathematical Society Publishing House</publisher><subject>Number theory</subject><ispartof>Publications of the Research Institute for Mathematical Sciences, 2003, Vol.39 (4), p.695-720</ispartof><rights>Research Institute for Mathematical Sciences, Kyoto University</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c516t-7a21bbeabf464d8708945325dbb78784f895f4b514518590228db59219d19ef13</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,4012,24040,27910,27911,27912</link.rule.ids></links><search><creatorcontrib>Furusho, Hidekazu</creatorcontrib><title>The Multiple Zeta Value Algebra and the Stable Derivation Algebra</title><title>Publications of the Research Institute for Mathematical Sciences</title><addtitle>Publ. Res. Inst. Math. Sci</addtitle><description>The MZV algebra is the graded algebra over Q generated by all multiple zeta values. The stable derivation algebra is a graded Lie algebra version of the Grothendieck–Teichmüller group. We shall show that there is a canonical surjective Q-linear map from the graded dual vector space of the stable derivation algebra over Q to the new-zeta space, the quotient space of the sub-vector space of the MZV algebra whose grade is greater than 2 by the square of the maximal ideal. As a corollary, we get an upper-bound for the dimension of the graded piece of the MZV algebra at each weight in terms of the corresponding dimension of the graded piece of the stable derivation algebra. If some standard conjectures by Y. Ihara and P. Deligne concerning the structure of the stable derivation algebra hold, this will become a bound conjectured in Zagier’s talk at 1st European Congress of Mathematics. Via the stable derivation algebra, we can compare the new-zeta space with the l-adic Galois image Lie algebra which is associated with the Galois representation on the pro-l fundamental group of P1Q − {0, 1, ∞}.</description><subject>Number theory</subject><issn>0034-5318</issn><issn>1663-4926</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNp1kM1OwzAQhC0EEqFw5-gHINR21n_HqEBBKuJA4cAlshsbUoWksl0k3h6XgjhxWu3qm9XMIHROySXTUk43oXuPU0qBgxQE4AAVVIiqBM3EISoIqaDkFVXH6CTGNSHANYMC1cs3h--3feo2vcMvLhn8bPqtw3X_6mww2AwtTpl5TMZm4sqF7sOkbhx-iVN05E0f3dnPnKCnm-vl7LZcPMzvZvWiXHEqUikNo9Y6Yz0IaJUkSgOvGG-tlUoq8EpzD5bnAFRxTRhTrc0eqW6pdp5WE0T2f1dhjDE43-wim_DZUNLsKvjeY_NXQZZc7CUu39fjNgzZ4P_4FzVgXLY</recordid><startdate>2003</startdate><enddate>2003</enddate><creator>Furusho, Hidekazu</creator><general>European Mathematical Society Publishing House</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2003</creationdate><title>The Multiple Zeta Value Algebra and the Stable Derivation Algebra</title><author>Furusho, Hidekazu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c516t-7a21bbeabf464d8708945325dbb78784f895f4b514518590228db59219d19ef13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Number theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Furusho, Hidekazu</creatorcontrib><collection>CrossRef</collection><jtitle>Publications of the Research Institute for Mathematical Sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Furusho, Hidekazu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Multiple Zeta Value Algebra and the Stable Derivation Algebra</atitle><jtitle>Publications of the Research Institute for Mathematical Sciences</jtitle><addtitle>Publ. Res. Inst. Math. Sci</addtitle><date>2003</date><risdate>2003</risdate><volume>39</volume><issue>4</issue><spage>695</spage><epage>720</epage><pages>695-720</pages><issn>0034-5318</issn><eissn>1663-4926</eissn><abstract>The MZV algebra is the graded algebra over Q generated by all multiple zeta values. The stable derivation algebra is a graded Lie algebra version of the Grothendieck–Teichmüller group. We shall show that there is a canonical surjective Q-linear map from the graded dual vector space of the stable derivation algebra over Q to the new-zeta space, the quotient space of the sub-vector space of the MZV algebra whose grade is greater than 2 by the square of the maximal ideal. As a corollary, we get an upper-bound for the dimension of the graded piece of the MZV algebra at each weight in terms of the corresponding dimension of the graded piece of the stable derivation algebra. If some standard conjectures by Y. Ihara and P. Deligne concerning the structure of the stable derivation algebra hold, this will become a bound conjectured in Zagier’s talk at 1st European Congress of Mathematics. Via the stable derivation algebra, we can compare the new-zeta space with the l-adic Galois image Lie algebra which is associated with the Galois representation on the pro-l fundamental group of P1Q − {0, 1, ∞}.</abstract><cop>Zuerich, Switzerland</cop><pub>European Mathematical Society Publishing House</pub><doi>10.2977/prims/1145476044</doi><tpages>26</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0034-5318 |
ispartof | Publications of the Research Institute for Mathematical Sciences, 2003, Vol.39 (4), p.695-720 |
issn | 0034-5318 1663-4926 |
language | eng |
recordid | cdi_crossref_primary_10_2977_prims_1145476044 |
source | J-STAGE Free; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; European Mathematical Society Publishing House |
subjects | Number theory |
title | The Multiple Zeta Value Algebra and the Stable Derivation Algebra |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T01%3A33%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ems_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Multiple%20Zeta%20Value%20Algebra%20and%20the%20Stable%20Derivation%20Algebra&rft.jtitle=Publications%20of%20the%20Research%20Institute%20for%20Mathematical%20Sciences&rft.au=Furusho,%20Hidekazu&rft.date=2003&rft.volume=39&rft.issue=4&rft.spage=695&rft.epage=720&rft.pages=695-720&rft.issn=0034-5318&rft.eissn=1663-4926&rft_id=info:doi/10.2977/prims/1145476044&rft_dat=%3Cems_cross%3E10_2977_prims_1145476044%3C/ems_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |