The Multiple Zeta Value Algebra and the Stable Derivation Algebra

The MZV algebra is the graded algebra over Q generated by all multiple zeta values. The stable derivation algebra is a graded Lie algebra version of the Grothendieck–Teichmüller group. We shall show that there is a canonical surjective Q-linear map from the graded dual vector space of the stable der...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Publications of the Research Institute for Mathematical Sciences 2003, Vol.39 (4), p.695-720
1. Verfasser: Furusho, Hidekazu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 720
container_issue 4
container_start_page 695
container_title Publications of the Research Institute for Mathematical Sciences
container_volume 39
creator Furusho, Hidekazu
description The MZV algebra is the graded algebra over Q generated by all multiple zeta values. The stable derivation algebra is a graded Lie algebra version of the Grothendieck–Teichmüller group. We shall show that there is a canonical surjective Q-linear map from the graded dual vector space of the stable derivation algebra over Q to the new-zeta space, the quotient space of the sub-vector space of the MZV algebra whose grade is greater than 2 by the square of the maximal ideal. As a corollary, we get an upper-bound for the dimension of the graded piece of the MZV algebra at each weight in terms of the corresponding dimension of the graded piece of the stable derivation algebra. If some standard conjectures by Y. Ihara and P. Deligne concerning the structure of the stable derivation algebra hold, this will become a bound conjectured in Zagier’s talk at 1st European Congress of Mathematics. Via the stable derivation algebra, we can compare the new-zeta space with the l-adic Galois image Lie algebra which is associated with the Galois representation on the pro-l fundamental group of P1Q − {0, 1, ∞}.
doi_str_mv 10.2977/prims/1145476044
format Article
fullrecord <record><control><sourceid>ems_cross</sourceid><recordid>TN_cdi_crossref_primary_10_2977_prims_1145476044</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_2977_prims_1145476044</sourcerecordid><originalsourceid>FETCH-LOGICAL-c516t-7a21bbeabf464d8708945325dbb78784f895f4b514518590228db59219d19ef13</originalsourceid><addsrcrecordid>eNp1kM1OwzAQhC0EEqFw5-gHINR21n_HqEBBKuJA4cAlshsbUoWksl0k3h6XgjhxWu3qm9XMIHROySXTUk43oXuPU0qBgxQE4AAVVIiqBM3EISoIqaDkFVXH6CTGNSHANYMC1cs3h--3feo2vcMvLhn8bPqtw3X_6mww2AwtTpl5TMZm4sqF7sOkbhx-iVN05E0f3dnPnKCnm-vl7LZcPMzvZvWiXHEqUikNo9Y6Yz0IaJUkSgOvGG-tlUoq8EpzD5bnAFRxTRhTrc0eqW6pdp5WE0T2f1dhjDE43-wim_DZUNLsKvjeY_NXQZZc7CUu39fjNgzZ4P_4FzVgXLY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Multiple Zeta Value Algebra and the Stable Derivation Algebra</title><source>J-STAGE Free</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>European Mathematical Society Publishing House</source><creator>Furusho, Hidekazu</creator><creatorcontrib>Furusho, Hidekazu</creatorcontrib><description>The MZV algebra is the graded algebra over Q generated by all multiple zeta values. The stable derivation algebra is a graded Lie algebra version of the Grothendieck–Teichmüller group. We shall show that there is a canonical surjective Q-linear map from the graded dual vector space of the stable derivation algebra over Q to the new-zeta space, the quotient space of the sub-vector space of the MZV algebra whose grade is greater than 2 by the square of the maximal ideal. As a corollary, we get an upper-bound for the dimension of the graded piece of the MZV algebra at each weight in terms of the corresponding dimension of the graded piece of the stable derivation algebra. If some standard conjectures by Y. Ihara and P. Deligne concerning the structure of the stable derivation algebra hold, this will become a bound conjectured in Zagier’s talk at 1st European Congress of Mathematics. Via the stable derivation algebra, we can compare the new-zeta space with the l-adic Galois image Lie algebra which is associated with the Galois representation on the pro-l fundamental group of P1Q − {0, 1, ∞}.</description><identifier>ISSN: 0034-5318</identifier><identifier>EISSN: 1663-4926</identifier><identifier>DOI: 10.2977/prims/1145476044</identifier><language>eng</language><publisher>Zuerich, Switzerland: European Mathematical Society Publishing House</publisher><subject>Number theory</subject><ispartof>Publications of the Research Institute for Mathematical Sciences, 2003, Vol.39 (4), p.695-720</ispartof><rights>Research Institute for Mathematical Sciences, Kyoto University</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c516t-7a21bbeabf464d8708945325dbb78784f895f4b514518590228db59219d19ef13</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,4012,24040,27910,27911,27912</link.rule.ids></links><search><creatorcontrib>Furusho, Hidekazu</creatorcontrib><title>The Multiple Zeta Value Algebra and the Stable Derivation Algebra</title><title>Publications of the Research Institute for Mathematical Sciences</title><addtitle>Publ. Res. Inst. Math. Sci</addtitle><description>The MZV algebra is the graded algebra over Q generated by all multiple zeta values. The stable derivation algebra is a graded Lie algebra version of the Grothendieck–Teichmüller group. We shall show that there is a canonical surjective Q-linear map from the graded dual vector space of the stable derivation algebra over Q to the new-zeta space, the quotient space of the sub-vector space of the MZV algebra whose grade is greater than 2 by the square of the maximal ideal. As a corollary, we get an upper-bound for the dimension of the graded piece of the MZV algebra at each weight in terms of the corresponding dimension of the graded piece of the stable derivation algebra. If some standard conjectures by Y. Ihara and P. Deligne concerning the structure of the stable derivation algebra hold, this will become a bound conjectured in Zagier’s talk at 1st European Congress of Mathematics. Via the stable derivation algebra, we can compare the new-zeta space with the l-adic Galois image Lie algebra which is associated with the Galois representation on the pro-l fundamental group of P1Q − {0, 1, ∞}.</description><subject>Number theory</subject><issn>0034-5318</issn><issn>1663-4926</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNp1kM1OwzAQhC0EEqFw5-gHINR21n_HqEBBKuJA4cAlshsbUoWksl0k3h6XgjhxWu3qm9XMIHROySXTUk43oXuPU0qBgxQE4AAVVIiqBM3EISoIqaDkFVXH6CTGNSHANYMC1cs3h--3feo2vcMvLhn8bPqtw3X_6mww2AwtTpl5TMZm4sqF7sOkbhx-iVN05E0f3dnPnKCnm-vl7LZcPMzvZvWiXHEqUikNo9Y6Yz0IaJUkSgOvGG-tlUoq8EpzD5bnAFRxTRhTrc0eqW6pdp5WE0T2f1dhjDE43-wim_DZUNLsKvjeY_NXQZZc7CUu39fjNgzZ4P_4FzVgXLY</recordid><startdate>2003</startdate><enddate>2003</enddate><creator>Furusho, Hidekazu</creator><general>European Mathematical Society Publishing House</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2003</creationdate><title>The Multiple Zeta Value Algebra and the Stable Derivation Algebra</title><author>Furusho, Hidekazu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c516t-7a21bbeabf464d8708945325dbb78784f895f4b514518590228db59219d19ef13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Number theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Furusho, Hidekazu</creatorcontrib><collection>CrossRef</collection><jtitle>Publications of the Research Institute for Mathematical Sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Furusho, Hidekazu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Multiple Zeta Value Algebra and the Stable Derivation Algebra</atitle><jtitle>Publications of the Research Institute for Mathematical Sciences</jtitle><addtitle>Publ. Res. Inst. Math. Sci</addtitle><date>2003</date><risdate>2003</risdate><volume>39</volume><issue>4</issue><spage>695</spage><epage>720</epage><pages>695-720</pages><issn>0034-5318</issn><eissn>1663-4926</eissn><abstract>The MZV algebra is the graded algebra over Q generated by all multiple zeta values. The stable derivation algebra is a graded Lie algebra version of the Grothendieck–Teichmüller group. We shall show that there is a canonical surjective Q-linear map from the graded dual vector space of the stable derivation algebra over Q to the new-zeta space, the quotient space of the sub-vector space of the MZV algebra whose grade is greater than 2 by the square of the maximal ideal. As a corollary, we get an upper-bound for the dimension of the graded piece of the MZV algebra at each weight in terms of the corresponding dimension of the graded piece of the stable derivation algebra. If some standard conjectures by Y. Ihara and P. Deligne concerning the structure of the stable derivation algebra hold, this will become a bound conjectured in Zagier’s talk at 1st European Congress of Mathematics. Via the stable derivation algebra, we can compare the new-zeta space with the l-adic Galois image Lie algebra which is associated with the Galois representation on the pro-l fundamental group of P1Q − {0, 1, ∞}.</abstract><cop>Zuerich, Switzerland</cop><pub>European Mathematical Society Publishing House</pub><doi>10.2977/prims/1145476044</doi><tpages>26</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0034-5318
ispartof Publications of the Research Institute for Mathematical Sciences, 2003, Vol.39 (4), p.695-720
issn 0034-5318
1663-4926
language eng
recordid cdi_crossref_primary_10_2977_prims_1145476044
source J-STAGE Free; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; European Mathematical Society Publishing House
subjects Number theory
title The Multiple Zeta Value Algebra and the Stable Derivation Algebra
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T01%3A33%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ems_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Multiple%20Zeta%20Value%20Algebra%20and%20the%20Stable%20Derivation%20Algebra&rft.jtitle=Publications%20of%20the%20Research%20Institute%20for%20Mathematical%20Sciences&rft.au=Furusho,%20Hidekazu&rft.date=2003&rft.volume=39&rft.issue=4&rft.spage=695&rft.epage=720&rft.pages=695-720&rft.issn=0034-5318&rft.eissn=1663-4926&rft_id=info:doi/10.2977/prims/1145476044&rft_dat=%3Cems_cross%3E10_2977_prims_1145476044%3C/ems_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true