Synthesis and Characterization of NBR´s by RAFT Technique and their use as Rubber Precursor in ABS Type Resins
Different rubbers based on polybutadiene were synthesized in solution by the reversible addition-fragmentation chain-transfer polymerization (RAFT) technique using 4-cyano-4-[(dodecylsulfanylthiocarbonyl)sulfanyl] entanoic acid as RAFT agent and 1,1’-azobiscyclohexanecarbonitrile (Vazo-88) as initia...
Gespeichert in:
Veröffentlicht in: | Journal of the Mexican Chemical Society 2017-10, Vol.58 (2) |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Different rubbers based on polybutadiene were synthesized in solution by the reversible addition-fragmentation chain-transfer polymerization (RAFT) technique using 4-cyano-4-[(dodecylsulfanylthiocarbonyl)sulfanyl] entanoic acid as RAFT agent and 1,1’-azobiscyclohexanecarbonitrile (Vazo-88) as initiator. The results obtained in the polymerization of polybutadiene and poly(butadiene-co-acrylonitrile) (NBR) are discussed in terms of molecular weight distribution, composition and microstructure. Composition of polybutadiene in NBR´s was kept constant along the copolymerization, and the vinyl, cis and trans isomers are shown in values of around 12, 26 and 62% in all cases. Resulting rubbers were used to synthesize acrylonitrilebutadiene-styrene (ABS) type resins through an in situ bulk polymerization. Dynamic-mechanical properties and the morphology were analyzed in all the different ABS resins. In DMA analyses, the rubber component presented two transitions as well as an increase in the magnitude of the transition located around -75 °C, which is explained by the significant amount of SAN occlusions in the morphology, analyzed by TEM. |
---|---|
ISSN: | 1870-249X 2594-0317 |
DOI: | 10.29356/jmcs.v58i2.177 |