A Review of Skin Cancer Detection: Traditional and Deep Learning-Based Techniques

One of the most serious types of cancer is skin cancer. The rising number of skin cancer cases, high mortality rate, and high cost of medical treatment necessitate early detection of its symptoms. Skin cancer is detected and differentiated from melanoma using lesion criteria such as symmetry, color,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Majallat Jāmiʻat Bābil 2023-06, Vol.31 (2), p.253-262
Hauptverfasser: Hussien, Maha Ali, Alasadi, Abbas H. Hassin
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 262
container_issue 2
container_start_page 253
container_title Majallat Jāmiʻat Bābil
container_volume 31
creator Hussien, Maha Ali
Alasadi, Abbas H. Hassin
description One of the most serious types of cancer is skin cancer. The rising number of skin cancer cases, high mortality rate, and high cost of medical treatment necessitate early detection of its symptoms. Skin cancer is detected and differentiated from melanoma using lesion criteria such as symmetry, color, size, and shape. Given the significance of these challenges, researchers have developed a variety of early-detection approaches for skin cancer. This paper comprehensively reviews classical and deep-learning techniques for detecting early skin cancer. The performance of these techniques is evaluated based on various metrics, and the datasets used for training and testing are analyzed. Studies using techniques such as clinical examination, dermoscopy, and histopathology are identified, and the architecture of the deep neural networks used for skin cancer detection is analyzed. A comprehensive comparison of classical and deep-learning techniques for skin cancer detection is provided in this review paper.
doi_str_mv 10.29196/jubpas.v31i2.4682
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_29196_jubpas_v31i2_4682</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_29196_jubpas_v31i2_4682</sourcerecordid><originalsourceid>FETCH-crossref_primary_10_29196_jubpas_v31i2_46823</originalsourceid><addsrcrecordid>eNqdzk1uwjAQBWALFYmocAFWc4Gk9oQE3F3Lj1h0A2RvDcmkNaVOagMVt-enPUFX70lPT_qEGCqZoFY6f9odty2F5JQqi8kon2BHRJgqjCcqzR5EpLTGWOYZ9sQghJ2UUmnMxmMZidULrPlk-QeaGjaf1sGUXMkeZnzg8mAb9wyFp8reKu2BXHWduIU3Ju-se49fKXAFBZcfzn4fOfRFt6Z94MFfPgpczIvpMi59E4Ln2rTefpE_GyXN3W9-_ebuNzd_-q_TBe4EUYE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Review of Skin Cancer Detection: Traditional and Deep Learning-Based Techniques</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Hussien, Maha Ali ; Alasadi, Abbas H. Hassin</creator><creatorcontrib>Hussien, Maha Ali ; Alasadi, Abbas H. Hassin</creatorcontrib><description>One of the most serious types of cancer is skin cancer. The rising number of skin cancer cases, high mortality rate, and high cost of medical treatment necessitate early detection of its symptoms. Skin cancer is detected and differentiated from melanoma using lesion criteria such as symmetry, color, size, and shape. Given the significance of these challenges, researchers have developed a variety of early-detection approaches for skin cancer. This paper comprehensively reviews classical and deep-learning techniques for detecting early skin cancer. The performance of these techniques is evaluated based on various metrics, and the datasets used for training and testing are analyzed. Studies using techniques such as clinical examination, dermoscopy, and histopathology are identified, and the architecture of the deep neural networks used for skin cancer detection is analyzed. A comprehensive comparison of classical and deep-learning techniques for skin cancer detection is provided in this review paper.</description><identifier>ISSN: 1992-0652</identifier><identifier>EISSN: 2312-8135</identifier><identifier>DOI: 10.29196/jubpas.v31i2.4682</identifier><language>eng</language><ispartof>Majallat Jāmiʻat Bābil, 2023-06, Vol.31 (2), p.253-262</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Hussien, Maha Ali</creatorcontrib><creatorcontrib>Alasadi, Abbas H. Hassin</creatorcontrib><title>A Review of Skin Cancer Detection: Traditional and Deep Learning-Based Techniques</title><title>Majallat Jāmiʻat Bābil</title><description>One of the most serious types of cancer is skin cancer. The rising number of skin cancer cases, high mortality rate, and high cost of medical treatment necessitate early detection of its symptoms. Skin cancer is detected and differentiated from melanoma using lesion criteria such as symmetry, color, size, and shape. Given the significance of these challenges, researchers have developed a variety of early-detection approaches for skin cancer. This paper comprehensively reviews classical and deep-learning techniques for detecting early skin cancer. The performance of these techniques is evaluated based on various metrics, and the datasets used for training and testing are analyzed. Studies using techniques such as clinical examination, dermoscopy, and histopathology are identified, and the architecture of the deep neural networks used for skin cancer detection is analyzed. A comprehensive comparison of classical and deep-learning techniques for skin cancer detection is provided in this review paper.</description><issn>1992-0652</issn><issn>2312-8135</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqdzk1uwjAQBWALFYmocAFWc4Gk9oQE3F3Lj1h0A2RvDcmkNaVOagMVt-enPUFX70lPT_qEGCqZoFY6f9odty2F5JQqi8kon2BHRJgqjCcqzR5EpLTGWOYZ9sQghJ2UUmnMxmMZidULrPlk-QeaGjaf1sGUXMkeZnzg8mAb9wyFp8reKu2BXHWduIU3Ju-se49fKXAFBZcfzn4fOfRFt6Z94MFfPgpczIvpMi59E4Ln2rTefpE_GyXN3W9-_ebuNzd_-q_TBe4EUYE</recordid><startdate>20230629</startdate><enddate>20230629</enddate><creator>Hussien, Maha Ali</creator><creator>Alasadi, Abbas H. Hassin</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230629</creationdate><title>A Review of Skin Cancer Detection: Traditional and Deep Learning-Based Techniques</title><author>Hussien, Maha Ali ; Alasadi, Abbas H. Hassin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-crossref_primary_10_29196_jubpas_v31i2_46823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Hussien, Maha Ali</creatorcontrib><creatorcontrib>Alasadi, Abbas H. Hassin</creatorcontrib><collection>CrossRef</collection><jtitle>Majallat Jāmiʻat Bābil</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hussien, Maha Ali</au><au>Alasadi, Abbas H. Hassin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Review of Skin Cancer Detection: Traditional and Deep Learning-Based Techniques</atitle><jtitle>Majallat Jāmiʻat Bābil</jtitle><date>2023-06-29</date><risdate>2023</risdate><volume>31</volume><issue>2</issue><spage>253</spage><epage>262</epage><pages>253-262</pages><issn>1992-0652</issn><eissn>2312-8135</eissn><abstract>One of the most serious types of cancer is skin cancer. The rising number of skin cancer cases, high mortality rate, and high cost of medical treatment necessitate early detection of its symptoms. Skin cancer is detected and differentiated from melanoma using lesion criteria such as symmetry, color, size, and shape. Given the significance of these challenges, researchers have developed a variety of early-detection approaches for skin cancer. This paper comprehensively reviews classical and deep-learning techniques for detecting early skin cancer. The performance of these techniques is evaluated based on various metrics, and the datasets used for training and testing are analyzed. Studies using techniques such as clinical examination, dermoscopy, and histopathology are identified, and the architecture of the deep neural networks used for skin cancer detection is analyzed. A comprehensive comparison of classical and deep-learning techniques for skin cancer detection is provided in this review paper.</abstract><doi>10.29196/jubpas.v31i2.4682</doi></addata></record>
fulltext fulltext
identifier ISSN: 1992-0652
ispartof Majallat Jāmiʻat Bābil, 2023-06, Vol.31 (2), p.253-262
issn 1992-0652
2312-8135
language eng
recordid cdi_crossref_primary_10_29196_jubpas_v31i2_4682
source EZB-FREE-00999 freely available EZB journals
title A Review of Skin Cancer Detection: Traditional and Deep Learning-Based Techniques
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T03%3A23%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Review%20of%20Skin%20Cancer%20Detection:%20Traditional%20and%20Deep%20Learning-Based%20Techniques&rft.jtitle=Majallat%20J%C4%81mi%CA%BBat%20B%C4%81bil&rft.au=Hussien,%20Maha%20Ali&rft.date=2023-06-29&rft.volume=31&rft.issue=2&rft.spage=253&rft.epage=262&rft.pages=253-262&rft.issn=1992-0652&rft.eissn=2312-8135&rft_id=info:doi/10.29196/jubpas.v31i2.4682&rft_dat=%3Ccrossref%3E10_29196_jubpas_v31i2_4682%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true