Writer identification based on arabic handwriting recognition by using speed up robust feature and K-nearest neighbor classification
In a writer recognition system, the system performs a “one-to-many” search in a large database with handwriting samples of known authors and returns a possible candidate list. This paper proposes method for writer identification handwritten Arabic word without segmentation to sub letters based on fe...
Gespeichert in:
Veröffentlicht in: | Majallat Jāmiʻat Bābil 2019-03, Vol.27 (1), p.1-10 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | ara ; eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | Majallat Jāmiʻat Bābil |
container_volume | 27 |
creator | Abd al-Hasan, Alya Karim Mahdi, Bashshar Sadun Muhammad, Asma Abd Allah |
description | In a writer recognition system, the system performs a “one-to-many” search in a large database
with handwriting samples of known authors and returns a possible candidate list. This paper proposes
method for writer identification handwritten Arabic word without segmentation to sub letters based on
feature extraction speed up robust feature transform (SURF) and K nearest neighbor classification
(KNN) to enhance the writer's identification accuracy. After feature extraction, it can be cluster by K-
means algorithm to standardize the number of features. The feature extraction and feature clustering
called to gather Bag of Word (BOW); it converts arbitrary number of image feature to uniform length
feature vector. The proposed method experimented using (IFN/ENIT) database. The recognition rate of
experiment result is (96.666). |
doi_str_mv | 10.29196/jubpas.v27i1.2060 |
format | Article |
fullrecord | <record><control><sourceid>emarefa_cross</sourceid><recordid>TN_cdi_crossref_primary_10_29196_jubpas_v27i1_2060</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1094603</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1153-3917283b7b8ed1d0fa31c4c131dff2e7daff52454198a312e978f156bdded2523</originalsourceid><addsrcrecordid>eNpNkE1OwzAQhS0EElXpBVggXyDFY8dJvEQVf6ISGxDLyI7HrVFJIjsBdc_BcRuQWM1o3vtmRo-QS2BLrkAV1--j6XVcfvLSw5Kzgp2QGRfAswqEPCUzUIpnrJD8nCxi9IYBZ5WSVTEj32_BDxiot9gO3vlGD75rqdERLU2NDtr4hm51a7-S07cbGrDpNq2ffHs6xsMw9piAsaehM2McqEM9jAFp4uhT1qIOmKYt-s3WdIE2O50e-Tt3Qc6c3kVc_NY5eb27fVk9ZOvn-8fVzTprAKTIhIKSV8KUpkILljktoMkbEGCd41ha7ZzkucxBVUniqMrKgSyMtWi55GJO-LS3CV2MAV3dB_-hw74GVh-jrKco62OU9SHKBF1NECYnOv2PUXnSxQ9ScXc-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Writer identification based on arabic handwriting recognition by using speed up robust feature and K-nearest neighbor classification</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Abd al-Hasan, Alya Karim ; Mahdi, Bashshar Sadun ; Muhammad, Asma Abd Allah</creator><creatorcontrib>Abd al-Hasan, Alya Karim ; Mahdi, Bashshar Sadun ; Muhammad, Asma Abd Allah</creatorcontrib><description>In a writer recognition system, the system performs a “one-to-many” search in a large database
with handwriting samples of known authors and returns a possible candidate list. This paper proposes
method for writer identification handwritten Arabic word without segmentation to sub letters based on
feature extraction speed up robust feature transform (SURF) and K nearest neighbor classification
(KNN) to enhance the writer's identification accuracy. After feature extraction, it can be cluster by K-
means algorithm to standardize the number of features. The feature extraction and feature clustering
called to gather Bag of Word (BOW); it converts arbitrary number of image feature to uniform length
feature vector. The proposed method experimented using (IFN/ENIT) database. The recognition rate of
experiment result is (96.666).</description><identifier>ISSN: 1992-0652</identifier><identifier>EISSN: 2312-8135</identifier><identifier>DOI: 10.29196/jubpas.v27i1.2060</identifier><language>ara ; eng</language><publisher>بابل، العراق: جامعة بابل</publisher><ispartof>Majallat Jāmiʻat Bābil, 2019-03, Vol.27 (1), p.1-10</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1153-3917283b7b8ed1d0fa31c4c131dff2e7daff52454198a312e978f156bdded2523</citedby><orcidid>0000-0002-6835-8872</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Abd al-Hasan, Alya Karim</creatorcontrib><creatorcontrib>Mahdi, Bashshar Sadun</creatorcontrib><creatorcontrib>Muhammad, Asma Abd Allah</creatorcontrib><title>Writer identification based on arabic handwriting recognition by using speed up robust feature and K-nearest neighbor classification</title><title>Majallat Jāmiʻat Bābil</title><description>In a writer recognition system, the system performs a “one-to-many” search in a large database
with handwriting samples of known authors and returns a possible candidate list. This paper proposes
method for writer identification handwritten Arabic word without segmentation to sub letters based on
feature extraction speed up robust feature transform (SURF) and K nearest neighbor classification
(KNN) to enhance the writer's identification accuracy. After feature extraction, it can be cluster by K-
means algorithm to standardize the number of features. The feature extraction and feature clustering
called to gather Bag of Word (BOW); it converts arbitrary number of image feature to uniform length
feature vector. The proposed method experimented using (IFN/ENIT) database. The recognition rate of
experiment result is (96.666).</description><issn>1992-0652</issn><issn>2312-8135</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpNkE1OwzAQhS0EElXpBVggXyDFY8dJvEQVf6ISGxDLyI7HrVFJIjsBdc_BcRuQWM1o3vtmRo-QS2BLrkAV1--j6XVcfvLSw5Kzgp2QGRfAswqEPCUzUIpnrJD8nCxi9IYBZ5WSVTEj32_BDxiot9gO3vlGD75rqdERLU2NDtr4hm51a7-S07cbGrDpNq2ffHs6xsMw9piAsaehM2McqEM9jAFp4uhT1qIOmKYt-s3WdIE2O50e-Tt3Qc6c3kVc_NY5eb27fVk9ZOvn-8fVzTprAKTIhIKSV8KUpkILljktoMkbEGCd41ha7ZzkucxBVUniqMrKgSyMtWi55GJO-LS3CV2MAV3dB_-hw74GVh-jrKco62OU9SHKBF1NECYnOv2PUXnSxQ9ScXc-</recordid><startdate>20190331</startdate><enddate>20190331</enddate><creator>Abd al-Hasan, Alya Karim</creator><creator>Mahdi, Bashshar Sadun</creator><creator>Muhammad, Asma Abd Allah</creator><general>جامعة بابل</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6835-8872</orcidid></search><sort><creationdate>20190331</creationdate><title>Writer identification based on arabic handwriting recognition by using speed up robust feature and K-nearest neighbor classification</title><author>Abd al-Hasan, Alya Karim ; Mahdi, Bashshar Sadun ; Muhammad, Asma Abd Allah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1153-3917283b7b8ed1d0fa31c4c131dff2e7daff52454198a312e978f156bdded2523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>ara ; eng</language><creationdate>2019</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Abd al-Hasan, Alya Karim</creatorcontrib><creatorcontrib>Mahdi, Bashshar Sadun</creatorcontrib><creatorcontrib>Muhammad, Asma Abd Allah</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>CrossRef</collection><jtitle>Majallat Jāmiʻat Bābil</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abd al-Hasan, Alya Karim</au><au>Mahdi, Bashshar Sadun</au><au>Muhammad, Asma Abd Allah</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Writer identification based on arabic handwriting recognition by using speed up robust feature and K-nearest neighbor classification</atitle><jtitle>Majallat Jāmiʻat Bābil</jtitle><date>2019-03-31</date><risdate>2019</risdate><volume>27</volume><issue>1</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>1992-0652</issn><eissn>2312-8135</eissn><abstract>In a writer recognition system, the system performs a “one-to-many” search in a large database
with handwriting samples of known authors and returns a possible candidate list. This paper proposes
method for writer identification handwritten Arabic word without segmentation to sub letters based on
feature extraction speed up robust feature transform (SURF) and K nearest neighbor classification
(KNN) to enhance the writer's identification accuracy. After feature extraction, it can be cluster by K-
means algorithm to standardize the number of features. The feature extraction and feature clustering
called to gather Bag of Word (BOW); it converts arbitrary number of image feature to uniform length
feature vector. The proposed method experimented using (IFN/ENIT) database. The recognition rate of
experiment result is (96.666).</abstract><cop>بابل، العراق</cop><pub>جامعة بابل</pub><doi>10.29196/jubpas.v27i1.2060</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-6835-8872</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1992-0652 |
ispartof | Majallat Jāmiʻat Bābil, 2019-03, Vol.27 (1), p.1-10 |
issn | 1992-0652 2312-8135 |
language | ara ; eng |
recordid | cdi_crossref_primary_10_29196_jubpas_v27i1_2060 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
title | Writer identification based on arabic handwriting recognition by using speed up robust feature and K-nearest neighbor classification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T19%3A07%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-emarefa_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Writer%20identification%20based%20on%20arabic%20handwriting%20recognition%20by%20using%20speed%20up%20robust%20feature%20and%20K-nearest%20neighbor%20classification&rft.jtitle=Majallat%20J%C4%81mi%CA%BBat%20B%C4%81bil&rft.au=Abd%20al-Hasan,%20Alya%20Karim&rft.date=2019-03-31&rft.volume=27&rft.issue=1&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=1992-0652&rft.eissn=2312-8135&rft_id=info:doi/10.29196/jubpas.v27i1.2060&rft_dat=%3Cemarefa_cross%3E1094603%3C/emarefa_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |