Doğrusal olmayan EEG dinamikleri ile anksiyete tespiti

Anksiyete, toplum içerisinde sıklıkla rastlanılan ve aşırı kaygı ile karakterize edilen psikiyatrik bir bozukluktur. Mevcut subjektif yöntemler düşünüldüğünde bu bozukluğun kantitatif yöntemlerle tespiti önem kazanmaktadır. Bu amaçla yapılan çalışmada 5’li Likert tipli Beck Anksiyete ölçeği kullanıl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Niğde Ömer Halisdemir Üniversitesi mühendislik bilimleri dergisi 2024-01
Hauptverfasser: UĞURGÖL, Elif, BATBAT, Turgay, YESİLBAS, Demet, ALTINKAYNAK, Miray, GÜVEN, Ayşegül, DEMİRCİ, Esra, DOLU, Nazan
Format: Artikel
Sprache:tur
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Niğde Ömer Halisdemir Üniversitesi mühendislik bilimleri dergisi
container_volume
creator UĞURGÖL, Elif
BATBAT, Turgay
YESİLBAS, Demet
ALTINKAYNAK, Miray
GÜVEN, Ayşegül
DEMİRCİ, Esra
DOLU, Nazan
description Anksiyete, toplum içerisinde sıklıkla rastlanılan ve aşırı kaygı ile karakterize edilen psikiyatrik bir bozukluktur. Mevcut subjektif yöntemler düşünüldüğünde bu bozukluğun kantitatif yöntemlerle tespiti önem kazanmaktadır. Bu amaçla yapılan çalışmada 5’li Likert tipli Beck Anksiyete ölçeği kullanılıp gerekli klinik değerlendirmeler yapılmıştır. Değerlendirme sonucunda anksiyete bozukluğu bulunan grup ve kontrol grubu şeklinde iki katılımcı grubu belirlenmiştir. Katılımcılardan dinlenim durumunda Elektroensefalografi (EEG) kayıtları alınmış daha sonra EEG sinyallerinden Entropi ve Hjorth (kararsızlık, hareketlilik) parametreleri hesaplanmıştır. Hesaplanan öznitelikler makine öğrenmesinde K -En Yakın Komşu (K-Nearest Neighbor, kNN), Çok Katmanlı Algılayıcı (Multi-Layer Perceptron, MLP) ve Rastgele Orman (Random Forest, RF) sınıflandırma algoritmalarıyla sınıflandırılmışlardır. Bu sınıflandırıcılardan en başarılı sonuç veren model olan kNN %88,4 değerine kadar ulaşabilmiştir. Ayrıca farklı parametrelerin bir arada kullanımının başarı oranında 3 algoritma için yükselişe sebep olduğu gözlenmiştir. Bu sonuçlar makineli öğrenme tekniklerinin anksiyetenin tanı süreçlerinde kullanımına uygun olduğunu gösteren çalışmaları desteklemektedir. Anxiety is a psychiatric disorder characterized by excessive worry frequently encountered within society. Given the prevalence of anxiety and the limitations of current subjective assessment methods, the quantitative determination of this disorder gains significance. In pursuit of this objective, the study employed the 5-point Likert-type Beck Anxiety Scale alongside essential clinical evaluations. As a result of the assessment, two participant groups were formed: one consisting of individuals with anxiety disorder and the other serving as the control group. Electroencephalography (EEG) recordings were obtained from the participants during resting states, followed by the computation of Entropy and Hjorth (instability, mobility) parameters from the EEG signals. The computed features were then classified using machine learning algorithms, namely K-Nearest Neighbor (kNN), Multi-Layer Perceptron (MLP), and Random Forest (RF), for classification purposes. The k-Nearest Neighbor (kNN) model, which yielded the most successful outcome among these classifiers, was able to reach an accuracy level of 88.4%. Furthermore, the combined utilization of diverse parameters was observed to lead to an increase in the success rate across all three al
doi_str_mv 10.28948/ngumuh.1359809
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_28948_ngumuh_1359809</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_28948_ngumuh_1359809</sourcerecordid><originalsourceid>FETCH-crossref_primary_10_28948_ngumuh_13598093</originalsourceid><addsrcrecordid>eNqVzjEOgjAYhuHGaCJRZtdeAGihRZgV9QDuTaNFf2kLaWHgNF7Gg5kog6vT9y5f8iC0oSROi5IVib0NZrjHNONlQcoZClKesyjPCZ__9BKF3j8IIWlJKOMsQNt9-3q6wUuNW23kKC2uqiO-gpUGGq0cYNAKS9t4GFWvcK98Bz2s0aKW2qtw2hVKDtV5d4ourvXeqVp0Dox0o6BEfIjiSxQTMfv_8QbkVEZ6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Doğrusal olmayan EEG dinamikleri ile anksiyete tespiti</title><source>DOAJ Directory of Open Access Journals</source><creator>UĞURGÖL, Elif ; BATBAT, Turgay ; YESİLBAS, Demet ; ALTINKAYNAK, Miray ; GÜVEN, Ayşegül ; DEMİRCİ, Esra ; DOLU, Nazan</creator><creatorcontrib>UĞURGÖL, Elif ; BATBAT, Turgay ; YESİLBAS, Demet ; ALTINKAYNAK, Miray ; GÜVEN, Ayşegül ; DEMİRCİ, Esra ; DOLU, Nazan</creatorcontrib><description>Anksiyete, toplum içerisinde sıklıkla rastlanılan ve aşırı kaygı ile karakterize edilen psikiyatrik bir bozukluktur. Mevcut subjektif yöntemler düşünüldüğünde bu bozukluğun kantitatif yöntemlerle tespiti önem kazanmaktadır. Bu amaçla yapılan çalışmada 5’li Likert tipli Beck Anksiyete ölçeği kullanılıp gerekli klinik değerlendirmeler yapılmıştır. Değerlendirme sonucunda anksiyete bozukluğu bulunan grup ve kontrol grubu şeklinde iki katılımcı grubu belirlenmiştir. Katılımcılardan dinlenim durumunda Elektroensefalografi (EEG) kayıtları alınmış daha sonra EEG sinyallerinden Entropi ve Hjorth (kararsızlık, hareketlilik) parametreleri hesaplanmıştır. Hesaplanan öznitelikler makine öğrenmesinde K -En Yakın Komşu (K-Nearest Neighbor, kNN), Çok Katmanlı Algılayıcı (Multi-Layer Perceptron, MLP) ve Rastgele Orman (Random Forest, RF) sınıflandırma algoritmalarıyla sınıflandırılmışlardır. Bu sınıflandırıcılardan en başarılı sonuç veren model olan kNN %88,4 değerine kadar ulaşabilmiştir. Ayrıca farklı parametrelerin bir arada kullanımının başarı oranında 3 algoritma için yükselişe sebep olduğu gözlenmiştir. Bu sonuçlar makineli öğrenme tekniklerinin anksiyetenin tanı süreçlerinde kullanımına uygun olduğunu gösteren çalışmaları desteklemektedir. Anxiety is a psychiatric disorder characterized by excessive worry frequently encountered within society. Given the prevalence of anxiety and the limitations of current subjective assessment methods, the quantitative determination of this disorder gains significance. In pursuit of this objective, the study employed the 5-point Likert-type Beck Anxiety Scale alongside essential clinical evaluations. As a result of the assessment, two participant groups were formed: one consisting of individuals with anxiety disorder and the other serving as the control group. Electroencephalography (EEG) recordings were obtained from the participants during resting states, followed by the computation of Entropy and Hjorth (instability, mobility) parameters from the EEG signals. The computed features were then classified using machine learning algorithms, namely K-Nearest Neighbor (kNN), Multi-Layer Perceptron (MLP), and Random Forest (RF), for classification purposes. The k-Nearest Neighbor (kNN) model, which yielded the most successful outcome among these classifiers, was able to reach an accuracy level of 88.4%. Furthermore, the combined utilization of diverse parameters was observed to lead to an increase in the success rate across all three algorithms.</description><identifier>ISSN: 2564-6605</identifier><identifier>EISSN: 2564-6605</identifier><identifier>DOI: 10.28948/ngumuh.1359809</identifier><language>tur</language><ispartof>Niğde Ömer Halisdemir Üniversitesi mühendislik bilimleri dergisi, 2024-01</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-0128-2076 ; 0000-0001-8517-3530 ; 0000-0002-3104-7587 ; 0000-0002-6071-9020 ; 0000-0002-0258-2804 ; 0000-0002-8424-4947 ; 0000-0001-9070-4439</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27903,27904</link.rule.ids></links><search><creatorcontrib>UĞURGÖL, Elif</creatorcontrib><creatorcontrib>BATBAT, Turgay</creatorcontrib><creatorcontrib>YESİLBAS, Demet</creatorcontrib><creatorcontrib>ALTINKAYNAK, Miray</creatorcontrib><creatorcontrib>GÜVEN, Ayşegül</creatorcontrib><creatorcontrib>DEMİRCİ, Esra</creatorcontrib><creatorcontrib>DOLU, Nazan</creatorcontrib><title>Doğrusal olmayan EEG dinamikleri ile anksiyete tespiti</title><title>Niğde Ömer Halisdemir Üniversitesi mühendislik bilimleri dergisi</title><description>Anksiyete, toplum içerisinde sıklıkla rastlanılan ve aşırı kaygı ile karakterize edilen psikiyatrik bir bozukluktur. Mevcut subjektif yöntemler düşünüldüğünde bu bozukluğun kantitatif yöntemlerle tespiti önem kazanmaktadır. Bu amaçla yapılan çalışmada 5’li Likert tipli Beck Anksiyete ölçeği kullanılıp gerekli klinik değerlendirmeler yapılmıştır. Değerlendirme sonucunda anksiyete bozukluğu bulunan grup ve kontrol grubu şeklinde iki katılımcı grubu belirlenmiştir. Katılımcılardan dinlenim durumunda Elektroensefalografi (EEG) kayıtları alınmış daha sonra EEG sinyallerinden Entropi ve Hjorth (kararsızlık, hareketlilik) parametreleri hesaplanmıştır. Hesaplanan öznitelikler makine öğrenmesinde K -En Yakın Komşu (K-Nearest Neighbor, kNN), Çok Katmanlı Algılayıcı (Multi-Layer Perceptron, MLP) ve Rastgele Orman (Random Forest, RF) sınıflandırma algoritmalarıyla sınıflandırılmışlardır. Bu sınıflandırıcılardan en başarılı sonuç veren model olan kNN %88,4 değerine kadar ulaşabilmiştir. Ayrıca farklı parametrelerin bir arada kullanımının başarı oranında 3 algoritma için yükselişe sebep olduğu gözlenmiştir. Bu sonuçlar makineli öğrenme tekniklerinin anksiyetenin tanı süreçlerinde kullanımına uygun olduğunu gösteren çalışmaları desteklemektedir. Anxiety is a psychiatric disorder characterized by excessive worry frequently encountered within society. Given the prevalence of anxiety and the limitations of current subjective assessment methods, the quantitative determination of this disorder gains significance. In pursuit of this objective, the study employed the 5-point Likert-type Beck Anxiety Scale alongside essential clinical evaluations. As a result of the assessment, two participant groups were formed: one consisting of individuals with anxiety disorder and the other serving as the control group. Electroencephalography (EEG) recordings were obtained from the participants during resting states, followed by the computation of Entropy and Hjorth (instability, mobility) parameters from the EEG signals. The computed features were then classified using machine learning algorithms, namely K-Nearest Neighbor (kNN), Multi-Layer Perceptron (MLP), and Random Forest (RF), for classification purposes. The k-Nearest Neighbor (kNN) model, which yielded the most successful outcome among these classifiers, was able to reach an accuracy level of 88.4%. Furthermore, the combined utilization of diverse parameters was observed to lead to an increase in the success rate across all three algorithms.</description><issn>2564-6605</issn><issn>2564-6605</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqVzjEOgjAYhuHGaCJRZtdeAGihRZgV9QDuTaNFf2kLaWHgNF7Gg5kog6vT9y5f8iC0oSROi5IVib0NZrjHNONlQcoZClKesyjPCZ__9BKF3j8IIWlJKOMsQNt9-3q6wUuNW23kKC2uqiO-gpUGGq0cYNAKS9t4GFWvcK98Bz2s0aKW2qtw2hVKDtV5d4ourvXeqVp0Dox0o6BEfIjiSxQTMfv_8QbkVEZ6</recordid><startdate>20240130</startdate><enddate>20240130</enddate><creator>UĞURGÖL, Elif</creator><creator>BATBAT, Turgay</creator><creator>YESİLBAS, Demet</creator><creator>ALTINKAYNAK, Miray</creator><creator>GÜVEN, Ayşegül</creator><creator>DEMİRCİ, Esra</creator><creator>DOLU, Nazan</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0128-2076</orcidid><orcidid>https://orcid.org/0000-0001-8517-3530</orcidid><orcidid>https://orcid.org/0000-0002-3104-7587</orcidid><orcidid>https://orcid.org/0000-0002-6071-9020</orcidid><orcidid>https://orcid.org/0000-0002-0258-2804</orcidid><orcidid>https://orcid.org/0000-0002-8424-4947</orcidid><orcidid>https://orcid.org/0000-0001-9070-4439</orcidid></search><sort><creationdate>20240130</creationdate><title>Doğrusal olmayan EEG dinamikleri ile anksiyete tespiti</title><author>UĞURGÖL, Elif ; BATBAT, Turgay ; YESİLBAS, Demet ; ALTINKAYNAK, Miray ; GÜVEN, Ayşegül ; DEMİRCİ, Esra ; DOLU, Nazan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-crossref_primary_10_28948_ngumuh_13598093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>tur</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>UĞURGÖL, Elif</creatorcontrib><creatorcontrib>BATBAT, Turgay</creatorcontrib><creatorcontrib>YESİLBAS, Demet</creatorcontrib><creatorcontrib>ALTINKAYNAK, Miray</creatorcontrib><creatorcontrib>GÜVEN, Ayşegül</creatorcontrib><creatorcontrib>DEMİRCİ, Esra</creatorcontrib><creatorcontrib>DOLU, Nazan</creatorcontrib><collection>CrossRef</collection><jtitle>Niğde Ömer Halisdemir Üniversitesi mühendislik bilimleri dergisi</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>UĞURGÖL, Elif</au><au>BATBAT, Turgay</au><au>YESİLBAS, Demet</au><au>ALTINKAYNAK, Miray</au><au>GÜVEN, Ayşegül</au><au>DEMİRCİ, Esra</au><au>DOLU, Nazan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Doğrusal olmayan EEG dinamikleri ile anksiyete tespiti</atitle><jtitle>Niğde Ömer Halisdemir Üniversitesi mühendislik bilimleri dergisi</jtitle><date>2024-01-30</date><risdate>2024</risdate><issn>2564-6605</issn><eissn>2564-6605</eissn><abstract>Anksiyete, toplum içerisinde sıklıkla rastlanılan ve aşırı kaygı ile karakterize edilen psikiyatrik bir bozukluktur. Mevcut subjektif yöntemler düşünüldüğünde bu bozukluğun kantitatif yöntemlerle tespiti önem kazanmaktadır. Bu amaçla yapılan çalışmada 5’li Likert tipli Beck Anksiyete ölçeği kullanılıp gerekli klinik değerlendirmeler yapılmıştır. Değerlendirme sonucunda anksiyete bozukluğu bulunan grup ve kontrol grubu şeklinde iki katılımcı grubu belirlenmiştir. Katılımcılardan dinlenim durumunda Elektroensefalografi (EEG) kayıtları alınmış daha sonra EEG sinyallerinden Entropi ve Hjorth (kararsızlık, hareketlilik) parametreleri hesaplanmıştır. Hesaplanan öznitelikler makine öğrenmesinde K -En Yakın Komşu (K-Nearest Neighbor, kNN), Çok Katmanlı Algılayıcı (Multi-Layer Perceptron, MLP) ve Rastgele Orman (Random Forest, RF) sınıflandırma algoritmalarıyla sınıflandırılmışlardır. Bu sınıflandırıcılardan en başarılı sonuç veren model olan kNN %88,4 değerine kadar ulaşabilmiştir. Ayrıca farklı parametrelerin bir arada kullanımının başarı oranında 3 algoritma için yükselişe sebep olduğu gözlenmiştir. Bu sonuçlar makineli öğrenme tekniklerinin anksiyetenin tanı süreçlerinde kullanımına uygun olduğunu gösteren çalışmaları desteklemektedir. Anxiety is a psychiatric disorder characterized by excessive worry frequently encountered within society. Given the prevalence of anxiety and the limitations of current subjective assessment methods, the quantitative determination of this disorder gains significance. In pursuit of this objective, the study employed the 5-point Likert-type Beck Anxiety Scale alongside essential clinical evaluations. As a result of the assessment, two participant groups were formed: one consisting of individuals with anxiety disorder and the other serving as the control group. Electroencephalography (EEG) recordings were obtained from the participants during resting states, followed by the computation of Entropy and Hjorth (instability, mobility) parameters from the EEG signals. The computed features were then classified using machine learning algorithms, namely K-Nearest Neighbor (kNN), Multi-Layer Perceptron (MLP), and Random Forest (RF), for classification purposes. The k-Nearest Neighbor (kNN) model, which yielded the most successful outcome among these classifiers, was able to reach an accuracy level of 88.4%. Furthermore, the combined utilization of diverse parameters was observed to lead to an increase in the success rate across all three algorithms.</abstract><doi>10.28948/ngumuh.1359809</doi><orcidid>https://orcid.org/0000-0002-0128-2076</orcidid><orcidid>https://orcid.org/0000-0001-8517-3530</orcidid><orcidid>https://orcid.org/0000-0002-3104-7587</orcidid><orcidid>https://orcid.org/0000-0002-6071-9020</orcidid><orcidid>https://orcid.org/0000-0002-0258-2804</orcidid><orcidid>https://orcid.org/0000-0002-8424-4947</orcidid><orcidid>https://orcid.org/0000-0001-9070-4439</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2564-6605
ispartof Niğde Ömer Halisdemir Üniversitesi mühendislik bilimleri dergisi, 2024-01
issn 2564-6605
2564-6605
language tur
recordid cdi_crossref_primary_10_28948_ngumuh_1359809
source DOAJ Directory of Open Access Journals
title Doğrusal olmayan EEG dinamikleri ile anksiyete tespiti
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T04%3A45%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Do%C4%9Frusal%20olmayan%20EEG%20dinamikleri%20ile%20anksiyete%20tespiti&rft.jtitle=Ni%C4%9Fde%20%C3%96mer%20Halisdemir%20%C3%9Cniversitesi%20m%C3%BChendislik%20bilimleri%20dergisi&rft.au=U%C4%9EURG%C3%96L,%20Elif&rft.date=2024-01-30&rft.issn=2564-6605&rft.eissn=2564-6605&rft_id=info:doi/10.28948/ngumuh.1359809&rft_dat=%3Ccrossref%3E10_28948_ngumuh_1359809%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true