Minimally Nonstandard K3 and FDE

Graham Priest has formulated the minimally inconsistent logic of paradox (MiLP), which is paraconsistent like Priest’s logic of paradox (LP), while staying closer to classical logic. We present logics that stand to (the propositional fragments of) strong Kleene logic (K3) and the logic of first-degr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Australasian journal of logic 2022-12, Vol.19 (5), p.182-213
Hauptverfasser: Golan, Rea, Hlobil, Ulf
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 213
container_issue 5
container_start_page 182
container_title The Australasian journal of logic
container_volume 19
creator Golan, Rea
Hlobil, Ulf
description Graham Priest has formulated the minimally inconsistent logic of paradox (MiLP), which is paraconsistent like Priest’s logic of paradox (LP), while staying closer to classical logic. We present logics that stand to (the propositional fragments of) strong Kleene logic (K3) and the logic of first-degree entailment (FDE) as MiLP stands to LP. That is, our logics share the paracomplete and the paraconsistent-cum-paracomplete nature of K3 and FDE, respectively, while keeping these features to a minimum in order to stay closer to classical logic. We give semantic and sequent-calculus formulations of these logics, and we highlight some reasons why these logics may be interesting in their own right.
doi_str_mv 10.26686/ajl.v19i5.7540
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_26686_ajl_v19i5_7540</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_26686_ajl_v19i5_7540</sourcerecordid><originalsourceid>FETCH-LOGICAL-c166t-f4b0d4376d8a576a9afeb8499d2d7f0e757b9b03dd9d7529ec580dc44c8104c23</originalsourceid><addsrcrecordid>eNpNz71OwzAUBWALgUQpzKx-gaTX__aISksRBRaYLcfXllKFFNkVUt-eUBiYzpmOzkfILYOWa231IuyG9ou5XrVGSTgjMyalbRQofv6vX5KrWncAXHErZ4Q-92P_EYbhSF_2Yz2EEUNB-iTo1Oj6fnVNLnIYarr5yzl5X6_elptm-_rwuLzbNpFpfWiy7AClMBptUEYHF3LqrHQOOZoMySjTuQ4EokOjuEtRWcAoZbQMZORiTha_u7Hsay0p-88yHStHz8CfgH4C-hPQ_wDFN9KdQxs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Minimally Nonstandard K3 and FDE</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Golan, Rea ; Hlobil, Ulf</creator><creatorcontrib>Golan, Rea ; Hlobil, Ulf</creatorcontrib><description>Graham Priest has formulated the minimally inconsistent logic of paradox (MiLP), which is paraconsistent like Priest’s logic of paradox (LP), while staying closer to classical logic. We present logics that stand to (the propositional fragments of) strong Kleene logic (K3) and the logic of first-degree entailment (FDE) as MiLP stands to LP. That is, our logics share the paracomplete and the paraconsistent-cum-paracomplete nature of K3 and FDE, respectively, while keeping these features to a minimum in order to stay closer to classical logic. We give semantic and sequent-calculus formulations of these logics, and we highlight some reasons why these logics may be interesting in their own right.</description><identifier>ISSN: 1448-5052</identifier><identifier>EISSN: 1448-5052</identifier><identifier>DOI: 10.26686/ajl.v19i5.7540</identifier><language>eng</language><ispartof>The Australasian journal of logic, 2022-12, Vol.19 (5), p.182-213</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-5072-9380</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Golan, Rea</creatorcontrib><creatorcontrib>Hlobil, Ulf</creatorcontrib><title>Minimally Nonstandard K3 and FDE</title><title>The Australasian journal of logic</title><description>Graham Priest has formulated the minimally inconsistent logic of paradox (MiLP), which is paraconsistent like Priest’s logic of paradox (LP), while staying closer to classical logic. We present logics that stand to (the propositional fragments of) strong Kleene logic (K3) and the logic of first-degree entailment (FDE) as MiLP stands to LP. That is, our logics share the paracomplete and the paraconsistent-cum-paracomplete nature of K3 and FDE, respectively, while keeping these features to a minimum in order to stay closer to classical logic. We give semantic and sequent-calculus formulations of these logics, and we highlight some reasons why these logics may be interesting in their own right.</description><issn>1448-5052</issn><issn>1448-5052</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpNz71OwzAUBWALgUQpzKx-gaTX__aISksRBRaYLcfXllKFFNkVUt-eUBiYzpmOzkfILYOWa231IuyG9ou5XrVGSTgjMyalbRQofv6vX5KrWncAXHErZ4Q-92P_EYbhSF_2Yz2EEUNB-iTo1Oj6fnVNLnIYarr5yzl5X6_elptm-_rwuLzbNpFpfWiy7AClMBptUEYHF3LqrHQOOZoMySjTuQ4EokOjuEtRWcAoZbQMZORiTha_u7Hsay0p-88yHStHz8CfgH4C-hPQ_wDFN9KdQxs</recordid><startdate>20221220</startdate><enddate>20221220</enddate><creator>Golan, Rea</creator><creator>Hlobil, Ulf</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5072-9380</orcidid></search><sort><creationdate>20221220</creationdate><title>Minimally Nonstandard K3 and FDE</title><author>Golan, Rea ; Hlobil, Ulf</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c166t-f4b0d4376d8a576a9afeb8499d2d7f0e757b9b03dd9d7529ec580dc44c8104c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Golan, Rea</creatorcontrib><creatorcontrib>Hlobil, Ulf</creatorcontrib><collection>CrossRef</collection><jtitle>The Australasian journal of logic</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Golan, Rea</au><au>Hlobil, Ulf</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Minimally Nonstandard K3 and FDE</atitle><jtitle>The Australasian journal of logic</jtitle><date>2022-12-20</date><risdate>2022</risdate><volume>19</volume><issue>5</issue><spage>182</spage><epage>213</epage><pages>182-213</pages><issn>1448-5052</issn><eissn>1448-5052</eissn><abstract>Graham Priest has formulated the minimally inconsistent logic of paradox (MiLP), which is paraconsistent like Priest’s logic of paradox (LP), while staying closer to classical logic. We present logics that stand to (the propositional fragments of) strong Kleene logic (K3) and the logic of first-degree entailment (FDE) as MiLP stands to LP. That is, our logics share the paracomplete and the paraconsistent-cum-paracomplete nature of K3 and FDE, respectively, while keeping these features to a minimum in order to stay closer to classical logic. We give semantic and sequent-calculus formulations of these logics, and we highlight some reasons why these logics may be interesting in their own right.</abstract><doi>10.26686/ajl.v19i5.7540</doi><tpages>32</tpages><orcidid>https://orcid.org/0000-0002-5072-9380</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1448-5052
ispartof The Australasian journal of logic, 2022-12, Vol.19 (5), p.182-213
issn 1448-5052
1448-5052
language eng
recordid cdi_crossref_primary_10_26686_ajl_v19i5_7540
source EZB-FREE-00999 freely available EZB journals
title Minimally Nonstandard K3 and FDE
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T04%3A10%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Minimally%20Nonstandard%20K3%20and%20FDE&rft.jtitle=The%20Australasian%20journal%20of%20logic&rft.au=Golan,%20Rea&rft.date=2022-12-20&rft.volume=19&rft.issue=5&rft.spage=182&rft.epage=213&rft.pages=182-213&rft.issn=1448-5052&rft.eissn=1448-5052&rft_id=info:doi/10.26686/ajl.v19i5.7540&rft_dat=%3Ccrossref%3E10_26686_ajl_v19i5_7540%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true