STDNet: A Spatio-Temporal Decomposition Neural Network for Multivariate Time Series Forecasting
Gespeichert in:
Veröffentlicht in: | Tsinghua science and technology 2024-08, Vol.29 (4), p.1232-1247 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1247 |
---|---|
container_issue | 4 |
container_start_page | 1232 |
container_title | Tsinghua science and technology |
container_volume | 29 |
creator | Jiang, Zhuolun Ning, Zefei Miao, Hao Wang, Li |
description | |
doi_str_mv | 10.26599/TST.2023.9010105 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_26599_TST_2023_9010105</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_26599_TST_2023_9010105</sourcerecordid><originalsourceid>FETCH-LOGICAL-c240t-23ab9fc2337efdd26ae50ed553d2019e7d2f335f112db145a84feae41fc5751f3</originalsourceid><addsrcrecordid>eNpNkL1OwzAcxC0EEqXwAGx-gRR_xAlhq1oKSKUMMbPl2n8jQ1JHtgvi7UmhA7rhTqfTDT-ErimZsUo0zY1s5YwRxmcNoaPECZpQQuqCMFqe_svn6CKld0J4JWo-QaqVyw3kOzzH7aCzD4WEfghRd3gJJowx-bHd4Q3sD-W4_QrxA7sQ8fO-y_5TR68zYOl7wC1EDwmvQgSjU_a7t0t05nSX4OroU_S6upeLx2L98vC0mK8Lw0qSC8b1tnGGcV6Ds5ZVGgQBKwS3jNAGassc58JRyuyWlkLflg40lNQZUQvq-BTRv18TQ0oRnBqi73X8VpSoX0JqJKQOhNSREP8BU8VamA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>STDNet: A Spatio-Temporal Decomposition Neural Network for Multivariate Time Series Forecasting</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Jiang, Zhuolun ; Ning, Zefei ; Miao, Hao ; Wang, Li</creator><creatorcontrib>Jiang, Zhuolun ; Ning, Zefei ; Miao, Hao ; Wang, Li</creatorcontrib><identifier>ISSN: 1007-0214</identifier><identifier>EISSN: 1007-0214</identifier><identifier>DOI: 10.26599/TST.2023.9010105</identifier><language>eng</language><ispartof>Tsinghua science and technology, 2024-08, Vol.29 (4), p.1232-1247</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c240t-23ab9fc2337efdd26ae50ed553d2019e7d2f335f112db145a84feae41fc5751f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Jiang, Zhuolun</creatorcontrib><creatorcontrib>Ning, Zefei</creatorcontrib><creatorcontrib>Miao, Hao</creatorcontrib><creatorcontrib>Wang, Li</creatorcontrib><title>STDNet: A Spatio-Temporal Decomposition Neural Network for Multivariate Time Series Forecasting</title><title>Tsinghua science and technology</title><issn>1007-0214</issn><issn>1007-0214</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkL1OwzAcxC0EEqXwAGx-gRR_xAlhq1oKSKUMMbPl2n8jQ1JHtgvi7UmhA7rhTqfTDT-ErimZsUo0zY1s5YwRxmcNoaPECZpQQuqCMFqe_svn6CKld0J4JWo-QaqVyw3kOzzH7aCzD4WEfghRd3gJJowx-bHd4Q3sD-W4_QrxA7sQ8fO-y_5TR68zYOl7wC1EDwmvQgSjU_a7t0t05nSX4OroU_S6upeLx2L98vC0mK8Lw0qSC8b1tnGGcV6Ds5ZVGgQBKwS3jNAGassc58JRyuyWlkLflg40lNQZUQvq-BTRv18TQ0oRnBqi73X8VpSoX0JqJKQOhNSREP8BU8VamA</recordid><startdate>202408</startdate><enddate>202408</enddate><creator>Jiang, Zhuolun</creator><creator>Ning, Zefei</creator><creator>Miao, Hao</creator><creator>Wang, Li</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202408</creationdate><title>STDNet: A Spatio-Temporal Decomposition Neural Network for Multivariate Time Series Forecasting</title><author>Jiang, Zhuolun ; Ning, Zefei ; Miao, Hao ; Wang, Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c240t-23ab9fc2337efdd26ae50ed553d2019e7d2f335f112db145a84feae41fc5751f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Zhuolun</creatorcontrib><creatorcontrib>Ning, Zefei</creatorcontrib><creatorcontrib>Miao, Hao</creatorcontrib><creatorcontrib>Wang, Li</creatorcontrib><collection>CrossRef</collection><jtitle>Tsinghua science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Zhuolun</au><au>Ning, Zefei</au><au>Miao, Hao</au><au>Wang, Li</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>STDNet: A Spatio-Temporal Decomposition Neural Network for Multivariate Time Series Forecasting</atitle><jtitle>Tsinghua science and technology</jtitle><date>2024-08</date><risdate>2024</risdate><volume>29</volume><issue>4</issue><spage>1232</spage><epage>1247</epage><pages>1232-1247</pages><issn>1007-0214</issn><eissn>1007-0214</eissn><doi>10.26599/TST.2023.9010105</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1007-0214 |
ispartof | Tsinghua science and technology, 2024-08, Vol.29 (4), p.1232-1247 |
issn | 1007-0214 1007-0214 |
language | eng |
recordid | cdi_crossref_primary_10_26599_TST_2023_9010105 |
source | EZB-FREE-00999 freely available EZB journals |
title | STDNet: A Spatio-Temporal Decomposition Neural Network for Multivariate Time Series Forecasting |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T15%3A37%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=STDNet:%20A%20Spatio-Temporal%20Decomposition%20Neural%20Network%20for%20Multivariate%20Time%20Series%20Forecasting&rft.jtitle=Tsinghua%20science%20and%20technology&rft.au=Jiang,%20Zhuolun&rft.date=2024-08&rft.volume=29&rft.issue=4&rft.spage=1232&rft.epage=1247&rft.pages=1232-1247&rft.issn=1007-0214&rft.eissn=1007-0214&rft_id=info:doi/10.26599/TST.2023.9010105&rft_dat=%3Ccrossref%3E10_26599_TST_2023_9010105%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |