Optimal guidance and nonlinear estimation for interception of decelerating targets

Optimal guidance and nonlinear estimation algorithms are formulated for the interception of a nonmaneuvering target vehicle decelerated by atmospheric drag. For an interceptor with two-axis control of translational acceleration, time-to-go may be selected to generate a zero-acceleration command alon...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of guidance, control, and dynamics control, and dynamics, 1995-03, Vol.18 (2), p.316-324
1. Verfasser: Hough, Michael E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 324
container_issue 2
container_start_page 316
container_title Journal of guidance, control, and dynamics
container_volume 18
creator Hough, Michael E
description Optimal guidance and nonlinear estimation algorithms are formulated for the interception of a nonmaneuvering target vehicle decelerated by atmospheric drag. For an interceptor with two-axis control of translational acceleration, time-to-go may be selected to generate a zero-acceleration command along the uncontrolled axis. A nine-state, extended Kalman filter is formulated in relative-motion coordinates, and the target deceleration vector is modeled by a linear, tint-order process. With angle measurements from a strapdown seeker, very small miss distances can be achieved, despite large estimation errors in range, because of the time-to-go algorithm. Theoretical collision probabilities are determined, using Monte Carlo simulations, as functions of sensor measurement accuracy, filter update rate, and engagement crossing angle. (Author)
doi_str_mv 10.2514/3.21386
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_2514_3_21386</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2313806388</sourcerecordid><originalsourceid>FETCH-LOGICAL-a345t-31d437be624903adbf595dbb4378738de74428b6708cc0aec06c32d4e653eeaf3</originalsourceid><addsrcrecordid>eNpt0F1LwzAUBuAgCs4p_oWAonjRmeSkX5cy_ILBQPQ6pM3p6OjSmqSg_95sEwT1KnDOw-HNS8g5ZzORcnkLM8GhyA7IhKcACRSFPCQTlgNPUlayY3Li_ZoxDhnPJ-RlOYR2ozu6GlujbY1UW0Ntb7vWonYU_XYd2t7Spne0tQFdjcNu0DfUYI0dugjsigbtVhj8KTlqdOfx7PudkreH-9f5U7JYPj7P7xaJBpmGBLiRkFeYCVky0KZq0jI1VRWHRQ6FwVxKUVRZzoq6ZhprltUgjMQsBUTdwJRc7e8Orn8fY1C1aX2M02mL_eiVSEspgYkIL37BdT86G7MpAbErlsWSorreq9r13jts1ODi192n4kxtm1Wgds1GebmXutX659ZfdvMf-16rwTSqGbsu4EeALwt9hLs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2313806388</pqid></control><display><type>article</type><title>Optimal guidance and nonlinear estimation for interception of decelerating targets</title><source>Alma/SFX Local Collection</source><creator>Hough, Michael E</creator><creatorcontrib>Hough, Michael E</creatorcontrib><description>Optimal guidance and nonlinear estimation algorithms are formulated for the interception of a nonmaneuvering target vehicle decelerated by atmospheric drag. For an interceptor with two-axis control of translational acceleration, time-to-go may be selected to generate a zero-acceleration command along the uncontrolled axis. A nine-state, extended Kalman filter is formulated in relative-motion coordinates, and the target deceleration vector is modeled by a linear, tint-order process. With angle measurements from a strapdown seeker, very small miss distances can be achieved, despite large estimation errors in range, because of the time-to-go algorithm. Theoretical collision probabilities are determined, using Monte Carlo simulations, as functions of sensor measurement accuracy, filter update rate, and engagement crossing angle. (Author)</description><identifier>ISSN: 0731-5090</identifier><identifier>EISSN: 1533-3884</identifier><identifier>DOI: 10.2514/3.21386</identifier><language>eng</language><publisher>Reston: American Institute of Aeronautics and Astronautics</publisher><subject>Algorithms ; Deceleration ; Interception ; Monte Carlo simulation ; Variables ; Vehicles ; Velocity</subject><ispartof>Journal of guidance, control, and dynamics, 1995-03, Vol.18 (2), p.316-324</ispartof><rights>Copyright American Institute of Aeronautics and Astronautics Mar/Apr 1995</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a345t-31d437be624903adbf595dbb4378738de74428b6708cc0aec06c32d4e653eeaf3</citedby><cites>FETCH-LOGICAL-a345t-31d437be624903adbf595dbb4378738de74428b6708cc0aec06c32d4e653eeaf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Hough, Michael E</creatorcontrib><title>Optimal guidance and nonlinear estimation for interception of decelerating targets</title><title>Journal of guidance, control, and dynamics</title><description>Optimal guidance and nonlinear estimation algorithms are formulated for the interception of a nonmaneuvering target vehicle decelerated by atmospheric drag. For an interceptor with two-axis control of translational acceleration, time-to-go may be selected to generate a zero-acceleration command along the uncontrolled axis. A nine-state, extended Kalman filter is formulated in relative-motion coordinates, and the target deceleration vector is modeled by a linear, tint-order process. With angle measurements from a strapdown seeker, very small miss distances can be achieved, despite large estimation errors in range, because of the time-to-go algorithm. Theoretical collision probabilities are determined, using Monte Carlo simulations, as functions of sensor measurement accuracy, filter update rate, and engagement crossing angle. (Author)</description><subject>Algorithms</subject><subject>Deceleration</subject><subject>Interception</subject><subject>Monte Carlo simulation</subject><subject>Variables</subject><subject>Vehicles</subject><subject>Velocity</subject><issn>0731-5090</issn><issn>1533-3884</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><recordid>eNpt0F1LwzAUBuAgCs4p_oWAonjRmeSkX5cy_ILBQPQ6pM3p6OjSmqSg_95sEwT1KnDOw-HNS8g5ZzORcnkLM8GhyA7IhKcACRSFPCQTlgNPUlayY3Li_ZoxDhnPJ-RlOYR2ozu6GlujbY1UW0Ntb7vWonYU_XYd2t7Spne0tQFdjcNu0DfUYI0dugjsigbtVhj8KTlqdOfx7PudkreH-9f5U7JYPj7P7xaJBpmGBLiRkFeYCVky0KZq0jI1VRWHRQ6FwVxKUVRZzoq6ZhprltUgjMQsBUTdwJRc7e8Orn8fY1C1aX2M02mL_eiVSEspgYkIL37BdT86G7MpAbErlsWSorreq9r13jts1ODi192n4kxtm1Wgds1GebmXutX659ZfdvMf-16rwTSqGbsu4EeALwt9hLs</recordid><startdate>19950301</startdate><enddate>19950301</enddate><creator>Hough, Michael E</creator><general>American Institute of Aeronautics and Astronautics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19950301</creationdate><title>Optimal guidance and nonlinear estimation for interception of decelerating targets</title><author>Hough, Michael E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a345t-31d437be624903adbf595dbb4378738de74428b6708cc0aec06c32d4e653eeaf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Algorithms</topic><topic>Deceleration</topic><topic>Interception</topic><topic>Monte Carlo simulation</topic><topic>Variables</topic><topic>Vehicles</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hough, Michael E</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of guidance, control, and dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hough, Michael E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal guidance and nonlinear estimation for interception of decelerating targets</atitle><jtitle>Journal of guidance, control, and dynamics</jtitle><date>1995-03-01</date><risdate>1995</risdate><volume>18</volume><issue>2</issue><spage>316</spage><epage>324</epage><pages>316-324</pages><issn>0731-5090</issn><eissn>1533-3884</eissn><abstract>Optimal guidance and nonlinear estimation algorithms are formulated for the interception of a nonmaneuvering target vehicle decelerated by atmospheric drag. For an interceptor with two-axis control of translational acceleration, time-to-go may be selected to generate a zero-acceleration command along the uncontrolled axis. A nine-state, extended Kalman filter is formulated in relative-motion coordinates, and the target deceleration vector is modeled by a linear, tint-order process. With angle measurements from a strapdown seeker, very small miss distances can be achieved, despite large estimation errors in range, because of the time-to-go algorithm. Theoretical collision probabilities are determined, using Monte Carlo simulations, as functions of sensor measurement accuracy, filter update rate, and engagement crossing angle. (Author)</abstract><cop>Reston</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/3.21386</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0731-5090
ispartof Journal of guidance, control, and dynamics, 1995-03, Vol.18 (2), p.316-324
issn 0731-5090
1533-3884
language eng
recordid cdi_crossref_primary_10_2514_3_21386
source Alma/SFX Local Collection
subjects Algorithms
Deceleration
Interception
Monte Carlo simulation
Variables
Vehicles
Velocity
title Optimal guidance and nonlinear estimation for interception of decelerating targets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T12%3A40%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20guidance%20and%20nonlinear%20estimation%20for%20interception%20of%20decelerating%20targets&rft.jtitle=Journal%20of%20guidance,%20control,%20and%20dynamics&rft.au=Hough,%20Michael%20E&rft.date=1995-03-01&rft.volume=18&rft.issue=2&rft.spage=316&rft.epage=324&rft.pages=316-324&rft.issn=0731-5090&rft.eissn=1533-3884&rft_id=info:doi/10.2514/3.21386&rft_dat=%3Cproquest_cross%3E2313806388%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2313806388&rft_id=info:pmid/&rfr_iscdi=true