Nonequilibrium Planar Interface Model for Solidification of Semitransparent Radiating Materials

A nonequilibrium solidification model for semitransparent materials is presented. Consideration is given to a planar layer of an emitting, absorbing, and scattering medium subject to radiative and convective cooling. The enthalpy method is used to formulate the phase-change problem together with rad...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of thermophysics and heat transfer 2000-07, Vol.14 (3), p.297-304
Hauptverfasser: Yao, Chengcai, Wang, G.-X, Chung, B. T. F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 304
container_issue 3
container_start_page 297
container_title Journal of thermophysics and heat transfer
container_volume 14
creator Yao, Chengcai
Wang, G.-X
Chung, B. T. F
description A nonequilibrium solidification model for semitransparent materials is presented. Consideration is given to a planar layer of an emitting, absorbing, and scattering medium subject to radiative and convective cooling. The enthalpy method is used to formulate the phase-change problem together with radiative transfer equation, with internal emitting, absorbing, and scattering taken into account. A planar interface nonequilibrium solidification is assumed with crystalline phase nucleated on the surface at a given nucleation temperature, which may be significantly lower than the equilibrium melting temperature of the material. A linear kinetics relationship is introduced to correlate the unknown solidification temperature to the interface velocity. A fully implicit finite volume scheme is used to solve the problem with the solidification interface tracked by a modified interface tracking method. The radiative transfer equation is solved using the discrete ordinates method. Internal radiation enhances the latent heat removal and thus leads to a higher interface velocity and a larger melt undercooling. Optical thickness and the conduction-radiation parameter are two important parameters that affect the solidification process. In the presence of external convective cooling, effect of internal radiation is small in the early stage of solidification. (Author)
doi_str_mv 10.2514/2.6543
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_2514_2_6543</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>27618413</sourcerecordid><originalsourceid>FETCH-LOGICAL-a402t-a9443f7510174388a635d22645d1b9b9283e2c75c05555220d4dac41cdc286693</originalsourceid><addsrcrecordid>eNp9kV1LHDEUhoNUcLu1vyFgsd6MzddkMpeyWCuoFddeh7P5kCzZyZrMQP33ZlFYaEtzcy7Ok-flnIPQZ0rOWUvFN3YuW8EP0Iy2nDdSEfUBzYhSXaM6xo7Qx1LWhFCpOjpD-i4N7nkKMaxymDb4PsIAGV8Po8sejMO3ybqIfcp4mWKwwQcDY0gDTh4v3SaMGYayheyGET-ADbU5POFbqP8DxPIJHfpa3PF7naNf3y8fFz-am59X14uLmwYEYWMDvRDcdy0ltBNcKZC8tYxJ0Vq66lc9U9wx07WGtPUxRqywYAQ11jAlZc_n6Oubd5vT8-TKqDehGBfrOC5NRXdCSE5klc_R6X9J1kmqBOUVPPkDXKcpD3UKzThlhJMK7XUmp1Ky83qbwwbyi6ZE7-6hmd7do4Jf3nVQDERf92ZC2dM1sud0nwoBYJ_4l-zsX9RbV2-t136KcXS_R_4K5sWhDA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2312030133</pqid></control><display><type>article</type><title>Nonequilibrium Planar Interface Model for Solidification of Semitransparent Radiating Materials</title><source>Alma/SFX Local Collection</source><creator>Yao, Chengcai ; Wang, G.-X ; Chung, B. T. F</creator><creatorcontrib>Yao, Chengcai ; Wang, G.-X ; Chung, B. T. F</creatorcontrib><description>A nonequilibrium solidification model for semitransparent materials is presented. Consideration is given to a planar layer of an emitting, absorbing, and scattering medium subject to radiative and convective cooling. The enthalpy method is used to formulate the phase-change problem together with radiative transfer equation, with internal emitting, absorbing, and scattering taken into account. A planar interface nonequilibrium solidification is assumed with crystalline phase nucleated on the surface at a given nucleation temperature, which may be significantly lower than the equilibrium melting temperature of the material. A linear kinetics relationship is introduced to correlate the unknown solidification temperature to the interface velocity. A fully implicit finite volume scheme is used to solve the problem with the solidification interface tracked by a modified interface tracking method. The radiative transfer equation is solved using the discrete ordinates method. Internal radiation enhances the latent heat removal and thus leads to a higher interface velocity and a larger melt undercooling. Optical thickness and the conduction-radiation parameter are two important parameters that affect the solidification process. In the presence of external convective cooling, effect of internal radiation is small in the early stage of solidification. (Author)</description><identifier>ISSN: 0887-8722</identifier><identifier>EISSN: 1533-6808</identifier><identifier>DOI: 10.2514/2.6543</identifier><identifier>CODEN: JTHTEO</identifier><language>eng</language><publisher>Reston, VA: American Institute of Aeronautics and Astronautics</publisher><subject>Analytical and numerical techniques ; Cooling ; Crystalline materials ; Enthalpy ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Heat convection ; Heat flow in porous media ; Heat radiation ; Heat transfer ; Heat transfer in inhomogeneous media, in porous media, and through interfaces ; Interfaces (materials) ; Mathematical models ; Nucleation ; Physics ; Reaction kinetics ; Solidification ; Thermal effects ; Thermal radiation</subject><ispartof>Journal of thermophysics and heat transfer, 2000-07, Vol.14 (3), p.297-304</ispartof><rights>2000 INIST-CNRS</rights><rights>Copyright American Institute of Aeronautics and Astronautics Jul 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a402t-a9443f7510174388a635d22645d1b9b9283e2c75c05555220d4dac41cdc286693</citedby><cites>FETCH-LOGICAL-a402t-a9443f7510174388a635d22645d1b9b9283e2c75c05555220d4dac41cdc286693</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1413931$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Yao, Chengcai</creatorcontrib><creatorcontrib>Wang, G.-X</creatorcontrib><creatorcontrib>Chung, B. T. F</creatorcontrib><title>Nonequilibrium Planar Interface Model for Solidification of Semitransparent Radiating Materials</title><title>Journal of thermophysics and heat transfer</title><description>A nonequilibrium solidification model for semitransparent materials is presented. Consideration is given to a planar layer of an emitting, absorbing, and scattering medium subject to radiative and convective cooling. The enthalpy method is used to formulate the phase-change problem together with radiative transfer equation, with internal emitting, absorbing, and scattering taken into account. A planar interface nonequilibrium solidification is assumed with crystalline phase nucleated on the surface at a given nucleation temperature, which may be significantly lower than the equilibrium melting temperature of the material. A linear kinetics relationship is introduced to correlate the unknown solidification temperature to the interface velocity. A fully implicit finite volume scheme is used to solve the problem with the solidification interface tracked by a modified interface tracking method. The radiative transfer equation is solved using the discrete ordinates method. Internal radiation enhances the latent heat removal and thus leads to a higher interface velocity and a larger melt undercooling. Optical thickness and the conduction-radiation parameter are two important parameters that affect the solidification process. In the presence of external convective cooling, effect of internal radiation is small in the early stage of solidification. (Author)</description><subject>Analytical and numerical techniques</subject><subject>Cooling</subject><subject>Crystalline materials</subject><subject>Enthalpy</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Heat convection</subject><subject>Heat flow in porous media</subject><subject>Heat radiation</subject><subject>Heat transfer</subject><subject>Heat transfer in inhomogeneous media, in porous media, and through interfaces</subject><subject>Interfaces (materials)</subject><subject>Mathematical models</subject><subject>Nucleation</subject><subject>Physics</subject><subject>Reaction kinetics</subject><subject>Solidification</subject><subject>Thermal effects</subject><subject>Thermal radiation</subject><issn>0887-8722</issn><issn>1533-6808</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNp9kV1LHDEUhoNUcLu1vyFgsd6MzddkMpeyWCuoFddeh7P5kCzZyZrMQP33ZlFYaEtzcy7Ok-flnIPQZ0rOWUvFN3YuW8EP0Iy2nDdSEfUBzYhSXaM6xo7Qx1LWhFCpOjpD-i4N7nkKMaxymDb4PsIAGV8Po8sejMO3ybqIfcp4mWKwwQcDY0gDTh4v3SaMGYayheyGET-ADbU5POFbqP8DxPIJHfpa3PF7naNf3y8fFz-am59X14uLmwYEYWMDvRDcdy0ltBNcKZC8tYxJ0Vq66lc9U9wx07WGtPUxRqywYAQ11jAlZc_n6Oubd5vT8-TKqDehGBfrOC5NRXdCSE5klc_R6X9J1kmqBOUVPPkDXKcpD3UKzThlhJMK7XUmp1Ky83qbwwbyi6ZE7-6hmd7do4Jf3nVQDERf92ZC2dM1sud0nwoBYJ_4l-zsX9RbV2-t136KcXS_R_4K5sWhDA</recordid><startdate>20000701</startdate><enddate>20000701</enddate><creator>Yao, Chengcai</creator><creator>Wang, G.-X</creator><creator>Chung, B. T. F</creator><general>American Institute of Aeronautics and Astronautics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>7TC</scope></search><sort><creationdate>20000701</creationdate><title>Nonequilibrium Planar Interface Model for Solidification of Semitransparent Radiating Materials</title><author>Yao, Chengcai ; Wang, G.-X ; Chung, B. T. F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a402t-a9443f7510174388a635d22645d1b9b9283e2c75c05555220d4dac41cdc286693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Analytical and numerical techniques</topic><topic>Cooling</topic><topic>Crystalline materials</topic><topic>Enthalpy</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Heat convection</topic><topic>Heat flow in porous media</topic><topic>Heat radiation</topic><topic>Heat transfer</topic><topic>Heat transfer in inhomogeneous media, in porous media, and through interfaces</topic><topic>Interfaces (materials)</topic><topic>Mathematical models</topic><topic>Nucleation</topic><topic>Physics</topic><topic>Reaction kinetics</topic><topic>Solidification</topic><topic>Thermal effects</topic><topic>Thermal radiation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yao, Chengcai</creatorcontrib><creatorcontrib>Wang, G.-X</creatorcontrib><creatorcontrib>Chung, B. T. F</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Mechanical Engineering Abstracts</collection><jtitle>Journal of thermophysics and heat transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yao, Chengcai</au><au>Wang, G.-X</au><au>Chung, B. T. F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonequilibrium Planar Interface Model for Solidification of Semitransparent Radiating Materials</atitle><jtitle>Journal of thermophysics and heat transfer</jtitle><date>2000-07-01</date><risdate>2000</risdate><volume>14</volume><issue>3</issue><spage>297</spage><epage>304</epage><pages>297-304</pages><issn>0887-8722</issn><eissn>1533-6808</eissn><coden>JTHTEO</coden><abstract>A nonequilibrium solidification model for semitransparent materials is presented. Consideration is given to a planar layer of an emitting, absorbing, and scattering medium subject to radiative and convective cooling. The enthalpy method is used to formulate the phase-change problem together with radiative transfer equation, with internal emitting, absorbing, and scattering taken into account. A planar interface nonequilibrium solidification is assumed with crystalline phase nucleated on the surface at a given nucleation temperature, which may be significantly lower than the equilibrium melting temperature of the material. A linear kinetics relationship is introduced to correlate the unknown solidification temperature to the interface velocity. A fully implicit finite volume scheme is used to solve the problem with the solidification interface tracked by a modified interface tracking method. The radiative transfer equation is solved using the discrete ordinates method. Internal radiation enhances the latent heat removal and thus leads to a higher interface velocity and a larger melt undercooling. Optical thickness and the conduction-radiation parameter are two important parameters that affect the solidification process. In the presence of external convective cooling, effect of internal radiation is small in the early stage of solidification. (Author)</abstract><cop>Reston, VA</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/2.6543</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0887-8722
ispartof Journal of thermophysics and heat transfer, 2000-07, Vol.14 (3), p.297-304
issn 0887-8722
1533-6808
language eng
recordid cdi_crossref_primary_10_2514_2_6543
source Alma/SFX Local Collection
subjects Analytical and numerical techniques
Cooling
Crystalline materials
Enthalpy
Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Heat convection
Heat flow in porous media
Heat radiation
Heat transfer
Heat transfer in inhomogeneous media, in porous media, and through interfaces
Interfaces (materials)
Mathematical models
Nucleation
Physics
Reaction kinetics
Solidification
Thermal effects
Thermal radiation
title Nonequilibrium Planar Interface Model for Solidification of Semitransparent Radiating Materials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T19%3A01%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonequilibrium%20Planar%20Interface%20Model%20for%20Solidification%20of%20Semitransparent%20Radiating%20Materials&rft.jtitle=Journal%20of%20thermophysics%20and%20heat%20transfer&rft.au=Yao,%20Chengcai&rft.date=2000-07-01&rft.volume=14&rft.issue=3&rft.spage=297&rft.epage=304&rft.pages=297-304&rft.issn=0887-8722&rft.eissn=1533-6808&rft.coden=JTHTEO&rft_id=info:doi/10.2514/2.6543&rft_dat=%3Cproquest_cross%3E27618413%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2312030133&rft_id=info:pmid/&rfr_iscdi=true