Nonequilibrium Planar Interface Model for Solidification of Semitransparent Radiating Materials
A nonequilibrium solidification model for semitransparent materials is presented. Consideration is given to a planar layer of an emitting, absorbing, and scattering medium subject to radiative and convective cooling. The enthalpy method is used to formulate the phase-change problem together with rad...
Gespeichert in:
Veröffentlicht in: | Journal of thermophysics and heat transfer 2000-07, Vol.14 (3), p.297-304 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 304 |
---|---|
container_issue | 3 |
container_start_page | 297 |
container_title | Journal of thermophysics and heat transfer |
container_volume | 14 |
creator | Yao, Chengcai Wang, G.-X Chung, B. T. F |
description | A nonequilibrium solidification model for semitransparent materials is presented. Consideration is given to a planar layer of an emitting, absorbing, and scattering medium subject to radiative and convective cooling. The enthalpy method is used to formulate the phase-change problem together with radiative transfer equation, with internal emitting, absorbing, and scattering taken into account. A planar interface nonequilibrium solidification is assumed with crystalline phase nucleated on the surface at a given nucleation temperature, which may be significantly lower than the equilibrium melting temperature of the material. A linear kinetics relationship is introduced to correlate the unknown solidification temperature to the interface velocity. A fully implicit finite volume scheme is used to solve the problem with the solidification interface tracked by a modified interface tracking method. The radiative transfer equation is solved using the discrete ordinates method. Internal radiation enhances the latent heat removal and thus leads to a higher interface velocity and a larger melt undercooling. Optical thickness and the conduction-radiation parameter are two important parameters that affect the solidification process. In the presence of external convective cooling, effect of internal radiation is small in the early stage of solidification. (Author) |
doi_str_mv | 10.2514/2.6543 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_2514_2_6543</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>27618413</sourcerecordid><originalsourceid>FETCH-LOGICAL-a402t-a9443f7510174388a635d22645d1b9b9283e2c75c05555220d4dac41cdc286693</originalsourceid><addsrcrecordid>eNp9kV1LHDEUhoNUcLu1vyFgsd6MzddkMpeyWCuoFddeh7P5kCzZyZrMQP33ZlFYaEtzcy7Ok-flnIPQZ0rOWUvFN3YuW8EP0Iy2nDdSEfUBzYhSXaM6xo7Qx1LWhFCpOjpD-i4N7nkKMaxymDb4PsIAGV8Po8sejMO3ybqIfcp4mWKwwQcDY0gDTh4v3SaMGYayheyGET-ADbU5POFbqP8DxPIJHfpa3PF7naNf3y8fFz-am59X14uLmwYEYWMDvRDcdy0ltBNcKZC8tYxJ0Vq66lc9U9wx07WGtPUxRqywYAQ11jAlZc_n6Oubd5vT8-TKqDehGBfrOC5NRXdCSE5klc_R6X9J1kmqBOUVPPkDXKcpD3UKzThlhJMK7XUmp1Ky83qbwwbyi6ZE7-6hmd7do4Jf3nVQDERf92ZC2dM1sud0nwoBYJ_4l-zsX9RbV2-t136KcXS_R_4K5sWhDA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2312030133</pqid></control><display><type>article</type><title>Nonequilibrium Planar Interface Model for Solidification of Semitransparent Radiating Materials</title><source>Alma/SFX Local Collection</source><creator>Yao, Chengcai ; Wang, G.-X ; Chung, B. T. F</creator><creatorcontrib>Yao, Chengcai ; Wang, G.-X ; Chung, B. T. F</creatorcontrib><description>A nonequilibrium solidification model for semitransparent materials is presented. Consideration is given to a planar layer of an emitting, absorbing, and scattering medium subject to radiative and convective cooling. The enthalpy method is used to formulate the phase-change problem together with radiative transfer equation, with internal emitting, absorbing, and scattering taken into account. A planar interface nonequilibrium solidification is assumed with crystalline phase nucleated on the surface at a given nucleation temperature, which may be significantly lower than the equilibrium melting temperature of the material. A linear kinetics relationship is introduced to correlate the unknown solidification temperature to the interface velocity. A fully implicit finite volume scheme is used to solve the problem with the solidification interface tracked by a modified interface tracking method. The radiative transfer equation is solved using the discrete ordinates method. Internal radiation enhances the latent heat removal and thus leads to a higher interface velocity and a larger melt undercooling. Optical thickness and the conduction-radiation parameter are two important parameters that affect the solidification process. In the presence of external convective cooling, effect of internal radiation is small in the early stage of solidification. (Author)</description><identifier>ISSN: 0887-8722</identifier><identifier>EISSN: 1533-6808</identifier><identifier>DOI: 10.2514/2.6543</identifier><identifier>CODEN: JTHTEO</identifier><language>eng</language><publisher>Reston, VA: American Institute of Aeronautics and Astronautics</publisher><subject>Analytical and numerical techniques ; Cooling ; Crystalline materials ; Enthalpy ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Heat convection ; Heat flow in porous media ; Heat radiation ; Heat transfer ; Heat transfer in inhomogeneous media, in porous media, and through interfaces ; Interfaces (materials) ; Mathematical models ; Nucleation ; Physics ; Reaction kinetics ; Solidification ; Thermal effects ; Thermal radiation</subject><ispartof>Journal of thermophysics and heat transfer, 2000-07, Vol.14 (3), p.297-304</ispartof><rights>2000 INIST-CNRS</rights><rights>Copyright American Institute of Aeronautics and Astronautics Jul 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a402t-a9443f7510174388a635d22645d1b9b9283e2c75c05555220d4dac41cdc286693</citedby><cites>FETCH-LOGICAL-a402t-a9443f7510174388a635d22645d1b9b9283e2c75c05555220d4dac41cdc286693</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1413931$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Yao, Chengcai</creatorcontrib><creatorcontrib>Wang, G.-X</creatorcontrib><creatorcontrib>Chung, B. T. F</creatorcontrib><title>Nonequilibrium Planar Interface Model for Solidification of Semitransparent Radiating Materials</title><title>Journal of thermophysics and heat transfer</title><description>A nonequilibrium solidification model for semitransparent materials is presented. Consideration is given to a planar layer of an emitting, absorbing, and scattering medium subject to radiative and convective cooling. The enthalpy method is used to formulate the phase-change problem together with radiative transfer equation, with internal emitting, absorbing, and scattering taken into account. A planar interface nonequilibrium solidification is assumed with crystalline phase nucleated on the surface at a given nucleation temperature, which may be significantly lower than the equilibrium melting temperature of the material. A linear kinetics relationship is introduced to correlate the unknown solidification temperature to the interface velocity. A fully implicit finite volume scheme is used to solve the problem with the solidification interface tracked by a modified interface tracking method. The radiative transfer equation is solved using the discrete ordinates method. Internal radiation enhances the latent heat removal and thus leads to a higher interface velocity and a larger melt undercooling. Optical thickness and the conduction-radiation parameter are two important parameters that affect the solidification process. In the presence of external convective cooling, effect of internal radiation is small in the early stage of solidification. (Author)</description><subject>Analytical and numerical techniques</subject><subject>Cooling</subject><subject>Crystalline materials</subject><subject>Enthalpy</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Heat convection</subject><subject>Heat flow in porous media</subject><subject>Heat radiation</subject><subject>Heat transfer</subject><subject>Heat transfer in inhomogeneous media, in porous media, and through interfaces</subject><subject>Interfaces (materials)</subject><subject>Mathematical models</subject><subject>Nucleation</subject><subject>Physics</subject><subject>Reaction kinetics</subject><subject>Solidification</subject><subject>Thermal effects</subject><subject>Thermal radiation</subject><issn>0887-8722</issn><issn>1533-6808</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNp9kV1LHDEUhoNUcLu1vyFgsd6MzddkMpeyWCuoFddeh7P5kCzZyZrMQP33ZlFYaEtzcy7Ok-flnIPQZ0rOWUvFN3YuW8EP0Iy2nDdSEfUBzYhSXaM6xo7Qx1LWhFCpOjpD-i4N7nkKMaxymDb4PsIAGV8Po8sejMO3ybqIfcp4mWKwwQcDY0gDTh4v3SaMGYayheyGET-ADbU5POFbqP8DxPIJHfpa3PF7naNf3y8fFz-am59X14uLmwYEYWMDvRDcdy0ltBNcKZC8tYxJ0Vq66lc9U9wx07WGtPUxRqywYAQ11jAlZc_n6Oubd5vT8-TKqDehGBfrOC5NRXdCSE5klc_R6X9J1kmqBOUVPPkDXKcpD3UKzThlhJMK7XUmp1Ky83qbwwbyi6ZE7-6hmd7do4Jf3nVQDERf92ZC2dM1sud0nwoBYJ_4l-zsX9RbV2-t136KcXS_R_4K5sWhDA</recordid><startdate>20000701</startdate><enddate>20000701</enddate><creator>Yao, Chengcai</creator><creator>Wang, G.-X</creator><creator>Chung, B. T. F</creator><general>American Institute of Aeronautics and Astronautics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>7TC</scope></search><sort><creationdate>20000701</creationdate><title>Nonequilibrium Planar Interface Model for Solidification of Semitransparent Radiating Materials</title><author>Yao, Chengcai ; Wang, G.-X ; Chung, B. T. F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a402t-a9443f7510174388a635d22645d1b9b9283e2c75c05555220d4dac41cdc286693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Analytical and numerical techniques</topic><topic>Cooling</topic><topic>Crystalline materials</topic><topic>Enthalpy</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Heat convection</topic><topic>Heat flow in porous media</topic><topic>Heat radiation</topic><topic>Heat transfer</topic><topic>Heat transfer in inhomogeneous media, in porous media, and through interfaces</topic><topic>Interfaces (materials)</topic><topic>Mathematical models</topic><topic>Nucleation</topic><topic>Physics</topic><topic>Reaction kinetics</topic><topic>Solidification</topic><topic>Thermal effects</topic><topic>Thermal radiation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yao, Chengcai</creatorcontrib><creatorcontrib>Wang, G.-X</creatorcontrib><creatorcontrib>Chung, B. T. F</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Mechanical Engineering Abstracts</collection><jtitle>Journal of thermophysics and heat transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yao, Chengcai</au><au>Wang, G.-X</au><au>Chung, B. T. F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonequilibrium Planar Interface Model for Solidification of Semitransparent Radiating Materials</atitle><jtitle>Journal of thermophysics and heat transfer</jtitle><date>2000-07-01</date><risdate>2000</risdate><volume>14</volume><issue>3</issue><spage>297</spage><epage>304</epage><pages>297-304</pages><issn>0887-8722</issn><eissn>1533-6808</eissn><coden>JTHTEO</coden><abstract>A nonequilibrium solidification model for semitransparent materials is presented. Consideration is given to a planar layer of an emitting, absorbing, and scattering medium subject to radiative and convective cooling. The enthalpy method is used to formulate the phase-change problem together with radiative transfer equation, with internal emitting, absorbing, and scattering taken into account. A planar interface nonequilibrium solidification is assumed with crystalline phase nucleated on the surface at a given nucleation temperature, which may be significantly lower than the equilibrium melting temperature of the material. A linear kinetics relationship is introduced to correlate the unknown solidification temperature to the interface velocity. A fully implicit finite volume scheme is used to solve the problem with the solidification interface tracked by a modified interface tracking method. The radiative transfer equation is solved using the discrete ordinates method. Internal radiation enhances the latent heat removal and thus leads to a higher interface velocity and a larger melt undercooling. Optical thickness and the conduction-radiation parameter are two important parameters that affect the solidification process. In the presence of external convective cooling, effect of internal radiation is small in the early stage of solidification. (Author)</abstract><cop>Reston, VA</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/2.6543</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0887-8722 |
ispartof | Journal of thermophysics and heat transfer, 2000-07, Vol.14 (3), p.297-304 |
issn | 0887-8722 1533-6808 |
language | eng |
recordid | cdi_crossref_primary_10_2514_2_6543 |
source | Alma/SFX Local Collection |
subjects | Analytical and numerical techniques Cooling Crystalline materials Enthalpy Exact sciences and technology Fundamental areas of phenomenology (including applications) Heat convection Heat flow in porous media Heat radiation Heat transfer Heat transfer in inhomogeneous media, in porous media, and through interfaces Interfaces (materials) Mathematical models Nucleation Physics Reaction kinetics Solidification Thermal effects Thermal radiation |
title | Nonequilibrium Planar Interface Model for Solidification of Semitransparent Radiating Materials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T19%3A01%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonequilibrium%20Planar%20Interface%20Model%20for%20Solidification%20of%20Semitransparent%20Radiating%20Materials&rft.jtitle=Journal%20of%20thermophysics%20and%20heat%20transfer&rft.au=Yao,%20Chengcai&rft.date=2000-07-01&rft.volume=14&rft.issue=3&rft.spage=297&rft.epage=304&rft.pages=297-304&rft.issn=0887-8722&rft.eissn=1533-6808&rft.coden=JTHTEO&rft_id=info:doi/10.2514/2.6543&rft_dat=%3Cproquest_cross%3E27618413%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2312030133&rft_id=info:pmid/&rfr_iscdi=true |