Nozzle Flow Separation

During the sea-level ignition process of rocket motors, the nozzle is subjected to an overexpanded flow condition that can cause high side loads. Prediction of the symmetrical separation location is the first key step to a determination of the range of possible side-load magnitudes. The mechanisms r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIAA journal 1998-09, Vol.36 (9), p.1618-1625
1. Verfasser: Romine, G. L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1625
container_issue 9
container_start_page 1618
container_title AIAA journal
container_volume 36
creator Romine, G. L
description During the sea-level ignition process of rocket motors, the nozzle is subjected to an overexpanded flow condition that can cause high side loads. Prediction of the symmetrical separation location is the first key step to a determination of the range of possible side-load magnitudes. The mechanisms responsible for causing the flow to separate from the nozzle wall are demonstrated, and the theory for a new solution of the separation location is presented. The model is also correlated with historical rocket data, a new approximate solution, and an empirical curve fit that has been in use for 35 years. (Author)
doi_str_mv 10.2514/2.588
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_2514_2_588</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>26704886</sourcerecordid><originalsourceid>FETCH-LOGICAL-a338t-cd04fe984406e175f4a3b97c804dee14e488a7e5c5ae4b6ba080c0d64a2e8b783</originalsourceid><addsrcrecordid>eNptz81LwzAYx_EgCs65q-chvpw689pmRxlOhaEHFbyFp-lT6MjamrQ499cb6RAETyHw4fvwI2TC6IwrJm_4TGl9QEZMCZEIrd4PyYhSyhImFT8mJyGs449nmo3I2VOz2zmcLl3zOX3BFjx0VVOfkqMSXMDJ_h2Tt-Xd6-IhWT3fPy5uVwkIobvEFlSWONdS0hRZpkoJIp9nVlNZIDKJUmvIUFkFKPM0B6qppUUqgaPOMy3G5Grotr756DF0ZlMFi85BjU0fDE8zGhtphJcDtL4JwWNpWl9twH8ZRs3PasNNXB3dxT4IwYIrPdS2Cr-YC5lJziO7HhhUAGbd9L6OM4eGaYvSlL1zHW67KM__k3-vfgNQQG0O</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26704886</pqid></control><display><type>article</type><title>Nozzle Flow Separation</title><source>Alma/SFX Local Collection</source><creator>Romine, G. L</creator><creatorcontrib>Romine, G. L</creatorcontrib><description>During the sea-level ignition process of rocket motors, the nozzle is subjected to an overexpanded flow condition that can cause high side loads. Prediction of the symmetrical separation location is the first key step to a determination of the range of possible side-load magnitudes. The mechanisms responsible for causing the flow to separate from the nozzle wall are demonstrated, and the theory for a new solution of the separation location is presented. The model is also correlated with historical rocket data, a new approximate solution, and an empirical curve fit that has been in use for 35 years. (Author)</description><identifier>ISSN: 0001-1452</identifier><identifier>EISSN: 1533-385X</identifier><identifier>DOI: 10.2514/2.588</identifier><identifier>CODEN: AIAJAH</identifier><language>eng</language><publisher>Reston, VA: American Institute of Aeronautics and Astronautics</publisher><subject>Compressible flows; shock and detonation phenomena ; Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; Jets ; Physics ; Shock-wave interactions and shock effects ; Shock-wave interactions and shockeffects ; Turbulent flows, convection, and heat transfer</subject><ispartof>AIAA journal, 1998-09, Vol.36 (9), p.1618-1625</ispartof><rights>1998 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a338t-cd04fe984406e175f4a3b97c804dee14e488a7e5c5ae4b6ba080c0d64a2e8b783</citedby><cites>FETCH-LOGICAL-a338t-cd04fe984406e175f4a3b97c804dee14e488a7e5c5ae4b6ba080c0d64a2e8b783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2347422$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Romine, G. L</creatorcontrib><title>Nozzle Flow Separation</title><title>AIAA journal</title><description>During the sea-level ignition process of rocket motors, the nozzle is subjected to an overexpanded flow condition that can cause high side loads. Prediction of the symmetrical separation location is the first key step to a determination of the range of possible side-load magnitudes. The mechanisms responsible for causing the flow to separate from the nozzle wall are demonstrated, and the theory for a new solution of the separation location is presented. The model is also correlated with historical rocket data, a new approximate solution, and an empirical curve fit that has been in use for 35 years. (Author)</description><subject>Compressible flows; shock and detonation phenomena</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Jets</subject><subject>Physics</subject><subject>Shock-wave interactions and shock effects</subject><subject>Shock-wave interactions and shockeffects</subject><subject>Turbulent flows, convection, and heat transfer</subject><issn>0001-1452</issn><issn>1533-385X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNptz81LwzAYx_EgCs65q-chvpw689pmRxlOhaEHFbyFp-lT6MjamrQ499cb6RAETyHw4fvwI2TC6IwrJm_4TGl9QEZMCZEIrd4PyYhSyhImFT8mJyGs449nmo3I2VOz2zmcLl3zOX3BFjx0VVOfkqMSXMDJ_h2Tt-Xd6-IhWT3fPy5uVwkIobvEFlSWONdS0hRZpkoJIp9nVlNZIDKJUmvIUFkFKPM0B6qppUUqgaPOMy3G5Grotr756DF0ZlMFi85BjU0fDE8zGhtphJcDtL4JwWNpWl9twH8ZRs3PasNNXB3dxT4IwYIrPdS2Cr-YC5lJziO7HhhUAGbd9L6OM4eGaYvSlL1zHW67KM__k3-vfgNQQG0O</recordid><startdate>19980901</startdate><enddate>19980901</enddate><creator>Romine, G. L</creator><general>American Institute of Aeronautics and Astronautics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>19980901</creationdate><title>Nozzle Flow Separation</title><author>Romine, G. L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a338t-cd04fe984406e175f4a3b97c804dee14e488a7e5c5ae4b6ba080c0d64a2e8b783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Compressible flows; shock and detonation phenomena</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Jets</topic><topic>Physics</topic><topic>Shock-wave interactions and shock effects</topic><topic>Shock-wave interactions and shockeffects</topic><topic>Turbulent flows, convection, and heat transfer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Romine, G. L</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>AIAA journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Romine, G. L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nozzle Flow Separation</atitle><jtitle>AIAA journal</jtitle><date>1998-09-01</date><risdate>1998</risdate><volume>36</volume><issue>9</issue><spage>1618</spage><epage>1625</epage><pages>1618-1625</pages><issn>0001-1452</issn><eissn>1533-385X</eissn><coden>AIAJAH</coden><abstract>During the sea-level ignition process of rocket motors, the nozzle is subjected to an overexpanded flow condition that can cause high side loads. Prediction of the symmetrical separation location is the first key step to a determination of the range of possible side-load magnitudes. The mechanisms responsible for causing the flow to separate from the nozzle wall are demonstrated, and the theory for a new solution of the separation location is presented. The model is also correlated with historical rocket data, a new approximate solution, and an empirical curve fit that has been in use for 35 years. (Author)</abstract><cop>Reston, VA</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/2.588</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-1452
ispartof AIAA journal, 1998-09, Vol.36 (9), p.1618-1625
issn 0001-1452
1533-385X
language eng
recordid cdi_crossref_primary_10_2514_2_588
source Alma/SFX Local Collection
subjects Compressible flows
shock and detonation phenomena
Exact sciences and technology
Fluid dynamics
Fundamental areas of phenomenology (including applications)
Jets
Physics
Shock-wave interactions and shock effects
Shock-wave interactions and shockeffects
Turbulent flows, convection, and heat transfer
title Nozzle Flow Separation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T20%3A36%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nozzle%20Flow%20Separation&rft.jtitle=AIAA%20journal&rft.au=Romine,%20G.%20L&rft.date=1998-09-01&rft.volume=36&rft.issue=9&rft.spage=1618&rft.epage=1625&rft.pages=1618-1625&rft.issn=0001-1452&rft.eissn=1533-385X&rft.coden=AIAJAH&rft_id=info:doi/10.2514/2.588&rft_dat=%3Cproquest_cross%3E26704886%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26704886&rft_id=info:pmid/&rfr_iscdi=true