Nozzle Flow Separation
During the sea-level ignition process of rocket motors, the nozzle is subjected to an overexpanded flow condition that can cause high side loads. Prediction of the symmetrical separation location is the first key step to a determination of the range of possible side-load magnitudes. The mechanisms r...
Gespeichert in:
Veröffentlicht in: | AIAA journal 1998-09, Vol.36 (9), p.1618-1625 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1625 |
---|---|
container_issue | 9 |
container_start_page | 1618 |
container_title | AIAA journal |
container_volume | 36 |
creator | Romine, G. L |
description | During the sea-level ignition process of rocket motors, the nozzle is subjected to an overexpanded flow condition that can cause high side loads. Prediction of the symmetrical separation location is the first key step to a determination of the range of possible side-load magnitudes. The mechanisms responsible for causing the flow to separate from the nozzle wall are demonstrated, and the theory for a new solution of the separation location is presented. The model is also correlated with historical rocket data, a new approximate solution, and an empirical curve fit that has been in use for 35 years. (Author) |
doi_str_mv | 10.2514/2.588 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_2514_2_588</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>26704886</sourcerecordid><originalsourceid>FETCH-LOGICAL-a338t-cd04fe984406e175f4a3b97c804dee14e488a7e5c5ae4b6ba080c0d64a2e8b783</originalsourceid><addsrcrecordid>eNptz81LwzAYx_EgCs65q-chvpw689pmRxlOhaEHFbyFp-lT6MjamrQ499cb6RAETyHw4fvwI2TC6IwrJm_4TGl9QEZMCZEIrd4PyYhSyhImFT8mJyGs449nmo3I2VOz2zmcLl3zOX3BFjx0VVOfkqMSXMDJ_h2Tt-Xd6-IhWT3fPy5uVwkIobvEFlSWONdS0hRZpkoJIp9nVlNZIDKJUmvIUFkFKPM0B6qppUUqgaPOMy3G5Grotr756DF0ZlMFi85BjU0fDE8zGhtphJcDtL4JwWNpWl9twH8ZRs3PasNNXB3dxT4IwYIrPdS2Cr-YC5lJziO7HhhUAGbd9L6OM4eGaYvSlL1zHW67KM__k3-vfgNQQG0O</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26704886</pqid></control><display><type>article</type><title>Nozzle Flow Separation</title><source>Alma/SFX Local Collection</source><creator>Romine, G. L</creator><creatorcontrib>Romine, G. L</creatorcontrib><description>During the sea-level ignition process of rocket motors, the nozzle is subjected to an overexpanded flow condition that can cause high side loads. Prediction of the symmetrical separation location is the first key step to a determination of the range of possible side-load magnitudes. The mechanisms responsible for causing the flow to separate from the nozzle wall are demonstrated, and the theory for a new solution of the separation location is presented. The model is also correlated with historical rocket data, a new approximate solution, and an empirical curve fit that has been in use for 35 years. (Author)</description><identifier>ISSN: 0001-1452</identifier><identifier>EISSN: 1533-385X</identifier><identifier>DOI: 10.2514/2.588</identifier><identifier>CODEN: AIAJAH</identifier><language>eng</language><publisher>Reston, VA: American Institute of Aeronautics and Astronautics</publisher><subject>Compressible flows; shock and detonation phenomena ; Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; Jets ; Physics ; Shock-wave interactions and shock effects ; Shock-wave interactions and shockeffects ; Turbulent flows, convection, and heat transfer</subject><ispartof>AIAA journal, 1998-09, Vol.36 (9), p.1618-1625</ispartof><rights>1998 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a338t-cd04fe984406e175f4a3b97c804dee14e488a7e5c5ae4b6ba080c0d64a2e8b783</citedby><cites>FETCH-LOGICAL-a338t-cd04fe984406e175f4a3b97c804dee14e488a7e5c5ae4b6ba080c0d64a2e8b783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2347422$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Romine, G. L</creatorcontrib><title>Nozzle Flow Separation</title><title>AIAA journal</title><description>During the sea-level ignition process of rocket motors, the nozzle is subjected to an overexpanded flow condition that can cause high side loads. Prediction of the symmetrical separation location is the first key step to a determination of the range of possible side-load magnitudes. The mechanisms responsible for causing the flow to separate from the nozzle wall are demonstrated, and the theory for a new solution of the separation location is presented. The model is also correlated with historical rocket data, a new approximate solution, and an empirical curve fit that has been in use for 35 years. (Author)</description><subject>Compressible flows; shock and detonation phenomena</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Jets</subject><subject>Physics</subject><subject>Shock-wave interactions and shock effects</subject><subject>Shock-wave interactions and shockeffects</subject><subject>Turbulent flows, convection, and heat transfer</subject><issn>0001-1452</issn><issn>1533-385X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNptz81LwzAYx_EgCs65q-chvpw689pmRxlOhaEHFbyFp-lT6MjamrQ499cb6RAETyHw4fvwI2TC6IwrJm_4TGl9QEZMCZEIrd4PyYhSyhImFT8mJyGs449nmo3I2VOz2zmcLl3zOX3BFjx0VVOfkqMSXMDJ_h2Tt-Xd6-IhWT3fPy5uVwkIobvEFlSWONdS0hRZpkoJIp9nVlNZIDKJUmvIUFkFKPM0B6qppUUqgaPOMy3G5Grotr756DF0ZlMFi85BjU0fDE8zGhtphJcDtL4JwWNpWl9twH8ZRs3PasNNXB3dxT4IwYIrPdS2Cr-YC5lJziO7HhhUAGbd9L6OM4eGaYvSlL1zHW67KM__k3-vfgNQQG0O</recordid><startdate>19980901</startdate><enddate>19980901</enddate><creator>Romine, G. L</creator><general>American Institute of Aeronautics and Astronautics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>19980901</creationdate><title>Nozzle Flow Separation</title><author>Romine, G. L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a338t-cd04fe984406e175f4a3b97c804dee14e488a7e5c5ae4b6ba080c0d64a2e8b783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Compressible flows; shock and detonation phenomena</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Jets</topic><topic>Physics</topic><topic>Shock-wave interactions and shock effects</topic><topic>Shock-wave interactions and shockeffects</topic><topic>Turbulent flows, convection, and heat transfer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Romine, G. L</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>AIAA journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Romine, G. L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nozzle Flow Separation</atitle><jtitle>AIAA journal</jtitle><date>1998-09-01</date><risdate>1998</risdate><volume>36</volume><issue>9</issue><spage>1618</spage><epage>1625</epage><pages>1618-1625</pages><issn>0001-1452</issn><eissn>1533-385X</eissn><coden>AIAJAH</coden><abstract>During the sea-level ignition process of rocket motors, the nozzle is subjected to an overexpanded flow condition that can cause high side loads. Prediction of the symmetrical separation location is the first key step to a determination of the range of possible side-load magnitudes. The mechanisms responsible for causing the flow to separate from the nozzle wall are demonstrated, and the theory for a new solution of the separation location is presented. The model is also correlated with historical rocket data, a new approximate solution, and an empirical curve fit that has been in use for 35 years. (Author)</abstract><cop>Reston, VA</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/2.588</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-1452 |
ispartof | AIAA journal, 1998-09, Vol.36 (9), p.1618-1625 |
issn | 0001-1452 1533-385X |
language | eng |
recordid | cdi_crossref_primary_10_2514_2_588 |
source | Alma/SFX Local Collection |
subjects | Compressible flows shock and detonation phenomena Exact sciences and technology Fluid dynamics Fundamental areas of phenomenology (including applications) Jets Physics Shock-wave interactions and shock effects Shock-wave interactions and shockeffects Turbulent flows, convection, and heat transfer |
title | Nozzle Flow Separation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T20%3A36%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nozzle%20Flow%20Separation&rft.jtitle=AIAA%20journal&rft.au=Romine,%20G.%20L&rft.date=1998-09-01&rft.volume=36&rft.issue=9&rft.spage=1618&rft.epage=1625&rft.pages=1618-1625&rft.issn=0001-1452&rft.eissn=1533-385X&rft.coden=AIAJAH&rft_id=info:doi/10.2514/2.588&rft_dat=%3Cproquest_cross%3E26704886%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26704886&rft_id=info:pmid/&rfr_iscdi=true |