Concave Bump for Impinging-Shock Control in Supersonic Flows

In the present study, a novel concave bump for impinging-shock control in two-dimensional supersonic flows is investigated. An analytical method for preliminary bump design based on a generalized shape of a shock-canceling bump has been developed and verified numerically. An extensive proof-of-conce...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIAA journal 2022-05, Vol.60 (5), p.2749-2766
Hauptverfasser: Schülein, Erich, Schnepf, Christian, Weiss, Sebastian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2766
container_issue 5
container_start_page 2749
container_title AIAA journal
container_volume 60
creator Schülein, Erich
Schnepf, Christian
Weiss, Sebastian
description In the present study, a novel concave bump for impinging-shock control in two-dimensional supersonic flows is investigated. An analytical method for preliminary bump design based on a generalized shape of a shock-canceling bump has been developed and verified numerically. An extensive proof-of-concept study was performed at a freestream Mach number ranging from 2.5 to 5.0 for shock-generator angles varying from 6 to 12 degrees. It could be demonstrated that a concave bump designed for a given flow-deflection angle is capable of significantly reducing the size of the separation bubble as well as the total pressure losses throughout the Mach number range investigated. The achievable gains depend on the Mach number, the flow-deflection angle, and the relative impingement position of the incident shock front on the bump. The highest values of separation-length reduction (up to 100%), momentum thickness reduction (up to 31%), and pressure recovery factor increase (up to 33%) were obtained at the optimum shock impingement position for the largest deflection angle studied. The concave bump is less effective, and in some cases even disadvantageous, when the incident shock wave does not optimally strike the bump crest.
doi_str_mv 10.2514/1.J060799
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_2514_1_J060799</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2658295781</sourcerecordid><originalsourceid>FETCH-LOGICAL-a293t-29dcbebd6d6a0dc21bbfd36be6d60bdf0a217e9573bc0ad2bc431369a0d27d553</originalsourceid><addsrcrecordid>eNpl0EtLAzEQAOAgCtbqwX8QEAQPqZmk2Qd40cVqpeChCt5CXqtbt5s16Sr-eyMteBAGhhm-mYFB6BTohAmYXsLkgWY0L8s9NALBOeGFeNlHI0opEJgKdoiOYlyliuUFjNBV5TujPh2-GdY9rn3A83XfdK8pyPLNm3ecwCb4FjcdXg69C9F3jcGz1n_FY3RQqza6k10eo-fZ7VN1TxaPd_PqekEUK_mGsNIa7bTNbKaoNQy0ri3PtEsNqm1NFYPclSLn2lBlmTZTDjwrE2a5FYKP0dl2bx_8x-DiRq78ELp0UrJMFCyNFpDUxVaZ4GMMrpZ9aNYqfEug8vc5EuTuOcmeb61qlPrb9h_-ANAAYfw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2658295781</pqid></control><display><type>article</type><title>Concave Bump for Impinging-Shock Control in Supersonic Flows</title><source>Alma/SFX Local Collection</source><creator>Schülein, Erich ; Schnepf, Christian ; Weiss, Sebastian</creator><creatorcontrib>Schülein, Erich ; Schnepf, Christian ; Weiss, Sebastian</creatorcontrib><description>In the present study, a novel concave bump for impinging-shock control in two-dimensional supersonic flows is investigated. An analytical method for preliminary bump design based on a generalized shape of a shock-canceling bump has been developed and verified numerically. An extensive proof-of-concept study was performed at a freestream Mach number ranging from 2.5 to 5.0 for shock-generator angles varying from 6 to 12 degrees. It could be demonstrated that a concave bump designed for a given flow-deflection angle is capable of significantly reducing the size of the separation bubble as well as the total pressure losses throughout the Mach number range investigated. The achievable gains depend on the Mach number, the flow-deflection angle, and the relative impingement position of the incident shock front on the bump. The highest values of separation-length reduction (up to 100%), momentum thickness reduction (up to 31%), and pressure recovery factor increase (up to 33%) were obtained at the optimum shock impingement position for the largest deflection angle studied. The concave bump is less effective, and in some cases even disadvantageous, when the incident shock wave does not optimally strike the bump crest.</description><identifier>ISSN: 0001-1452</identifier><identifier>EISSN: 1533-385X</identifier><identifier>DOI: 10.2514/1.J060799</identifier><language>eng</language><publisher>Virginia: American Institute of Aeronautics and Astronautics</publisher><subject>Deflection ; High speed ; Impingement ; Mach number ; Optimization ; Pressure loss ; Pressure recovery ; Reduction ; Reynolds number ; Separation ; Supersonic flow ; Two dimensional analysis ; Two dimensional flow</subject><ispartof>AIAA journal, 2022-05, Vol.60 (5), p.2749-2766</ispartof><rights>Copyright © 2021 by Erich Schülein, Christian Schnepf, and Sebastian Weiss. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. All requests for copying and permission to reprint should be submitted to CCC at ; employ the eISSN to initiate your request. See also AIAA Rights and Permissions .</rights><rights>Copyright © 2021 by Erich Schülein, Christian Schnepf, and Sebastian Weiss. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the eISSN 1533-385X to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a293t-29dcbebd6d6a0dc21bbfd36be6d60bdf0a217e9573bc0ad2bc431369a0d27d553</citedby><cites>FETCH-LOGICAL-a293t-29dcbebd6d6a0dc21bbfd36be6d60bdf0a217e9573bc0ad2bc431369a0d27d553</cites><orcidid>0000-0002-1125-8504</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Schülein, Erich</creatorcontrib><creatorcontrib>Schnepf, Christian</creatorcontrib><creatorcontrib>Weiss, Sebastian</creatorcontrib><title>Concave Bump for Impinging-Shock Control in Supersonic Flows</title><title>AIAA journal</title><description>In the present study, a novel concave bump for impinging-shock control in two-dimensional supersonic flows is investigated. An analytical method for preliminary bump design based on a generalized shape of a shock-canceling bump has been developed and verified numerically. An extensive proof-of-concept study was performed at a freestream Mach number ranging from 2.5 to 5.0 for shock-generator angles varying from 6 to 12 degrees. It could be demonstrated that a concave bump designed for a given flow-deflection angle is capable of significantly reducing the size of the separation bubble as well as the total pressure losses throughout the Mach number range investigated. The achievable gains depend on the Mach number, the flow-deflection angle, and the relative impingement position of the incident shock front on the bump. The highest values of separation-length reduction (up to 100%), momentum thickness reduction (up to 31%), and pressure recovery factor increase (up to 33%) were obtained at the optimum shock impingement position for the largest deflection angle studied. The concave bump is less effective, and in some cases even disadvantageous, when the incident shock wave does not optimally strike the bump crest.</description><subject>Deflection</subject><subject>High speed</subject><subject>Impingement</subject><subject>Mach number</subject><subject>Optimization</subject><subject>Pressure loss</subject><subject>Pressure recovery</subject><subject>Reduction</subject><subject>Reynolds number</subject><subject>Separation</subject><subject>Supersonic flow</subject><subject>Two dimensional analysis</subject><subject>Two dimensional flow</subject><issn>0001-1452</issn><issn>1533-385X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpl0EtLAzEQAOAgCtbqwX8QEAQPqZmk2Qd40cVqpeChCt5CXqtbt5s16Sr-eyMteBAGhhm-mYFB6BTohAmYXsLkgWY0L8s9NALBOeGFeNlHI0opEJgKdoiOYlyliuUFjNBV5TujPh2-GdY9rn3A83XfdK8pyPLNm3ecwCb4FjcdXg69C9F3jcGz1n_FY3RQqza6k10eo-fZ7VN1TxaPd_PqekEUK_mGsNIa7bTNbKaoNQy0ri3PtEsNqm1NFYPclSLn2lBlmTZTDjwrE2a5FYKP0dl2bx_8x-DiRq78ELp0UrJMFCyNFpDUxVaZ4GMMrpZ9aNYqfEug8vc5EuTuOcmeb61qlPrb9h_-ANAAYfw</recordid><startdate>202205</startdate><enddate>202205</enddate><creator>Schülein, Erich</creator><creator>Schnepf, Christian</creator><creator>Weiss, Sebastian</creator><general>American Institute of Aeronautics and Astronautics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1125-8504</orcidid></search><sort><creationdate>202205</creationdate><title>Concave Bump for Impinging-Shock Control in Supersonic Flows</title><author>Schülein, Erich ; Schnepf, Christian ; Weiss, Sebastian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a293t-29dcbebd6d6a0dc21bbfd36be6d60bdf0a217e9573bc0ad2bc431369a0d27d553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Deflection</topic><topic>High speed</topic><topic>Impingement</topic><topic>Mach number</topic><topic>Optimization</topic><topic>Pressure loss</topic><topic>Pressure recovery</topic><topic>Reduction</topic><topic>Reynolds number</topic><topic>Separation</topic><topic>Supersonic flow</topic><topic>Two dimensional analysis</topic><topic>Two dimensional flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schülein, Erich</creatorcontrib><creatorcontrib>Schnepf, Christian</creatorcontrib><creatorcontrib>Weiss, Sebastian</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>AIAA journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schülein, Erich</au><au>Schnepf, Christian</au><au>Weiss, Sebastian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Concave Bump for Impinging-Shock Control in Supersonic Flows</atitle><jtitle>AIAA journal</jtitle><date>2022-05</date><risdate>2022</risdate><volume>60</volume><issue>5</issue><spage>2749</spage><epage>2766</epage><pages>2749-2766</pages><issn>0001-1452</issn><eissn>1533-385X</eissn><abstract>In the present study, a novel concave bump for impinging-shock control in two-dimensional supersonic flows is investigated. An analytical method for preliminary bump design based on a generalized shape of a shock-canceling bump has been developed and verified numerically. An extensive proof-of-concept study was performed at a freestream Mach number ranging from 2.5 to 5.0 for shock-generator angles varying from 6 to 12 degrees. It could be demonstrated that a concave bump designed for a given flow-deflection angle is capable of significantly reducing the size of the separation bubble as well as the total pressure losses throughout the Mach number range investigated. The achievable gains depend on the Mach number, the flow-deflection angle, and the relative impingement position of the incident shock front on the bump. The highest values of separation-length reduction (up to 100%), momentum thickness reduction (up to 31%), and pressure recovery factor increase (up to 33%) were obtained at the optimum shock impingement position for the largest deflection angle studied. The concave bump is less effective, and in some cases even disadvantageous, when the incident shock wave does not optimally strike the bump crest.</abstract><cop>Virginia</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/1.J060799</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-1125-8504</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0001-1452
ispartof AIAA journal, 2022-05, Vol.60 (5), p.2749-2766
issn 0001-1452
1533-385X
language eng
recordid cdi_crossref_primary_10_2514_1_J060799
source Alma/SFX Local Collection
subjects Deflection
High speed
Impingement
Mach number
Optimization
Pressure loss
Pressure recovery
Reduction
Reynolds number
Separation
Supersonic flow
Two dimensional analysis
Two dimensional flow
title Concave Bump for Impinging-Shock Control in Supersonic Flows
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T19%3A17%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Concave%20Bump%20for%20Impinging-Shock%20Control%20in%20Supersonic%20Flows&rft.jtitle=AIAA%20journal&rft.au=Sch%C3%BClein,%20Erich&rft.date=2022-05&rft.volume=60&rft.issue=5&rft.spage=2749&rft.epage=2766&rft.pages=2749-2766&rft.issn=0001-1452&rft.eissn=1533-385X&rft_id=info:doi/10.2514/1.J060799&rft_dat=%3Cproquest_cross%3E2658295781%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2658295781&rft_id=info:pmid/&rfr_iscdi=true