Eigenvalue Analysis of Timoshenko Beams and Mindlin Plates with Unfitted Finite Element Methods
This paper focuses on finite element methods for eigenvalue analysis of arbitrarily shaped domains with multimaterial or material–void interfaces that do not follow element boundaries. Such configurations are found in problems with evolving discontinuities and interfaces as in, for example, fluid–st...
Gespeichert in:
Veröffentlicht in: | AIAA journal 2022-10, Vol.60 (10), p.5967-5983 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5983 |
---|---|
container_issue | 10 |
container_start_page | 5967 |
container_title | AIAA journal |
container_volume | 60 |
creator | Arsalane, Walid Bhatia, Manav Deaton, Joshua D. |
description | This paper focuses on finite element methods for eigenvalue analysis of arbitrarily shaped domains with multimaterial or material–void interfaces that do not follow element boundaries. Such configurations are found in problems with evolving discontinuities and interfaces as in, for example, fluid–structure interaction, topology optimization, and crack propagation problems. The differential equations considered include the elliptic operator, Timoshenko beam, and Mindlin plate. The compatibility conditions at the interface are weakly imposed using either Nitsche’s method or Lagrange multipliers, and results are benchmarked against interface-fitted discretizations. Nitsche’s method shows a direct dependence on a penalty parameter, and the Lagrange multiplier method requires additional degrees of freedom but yields robustness. The convergence rate of the discretized forms is computationally determined and shown to be optimal for eigenvalue analysis of both Timoshenko beams and Mindlin plates. |
doi_str_mv | 10.2514/1.J058658 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_2514_1_J058658</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2716620437</sourcerecordid><originalsourceid>FETCH-LOGICAL-a248t-24df2b219da46f451d94433ff06c6e1f55d09cb21f0bfcac9f7e80a4a5dd2fc13</originalsourceid><addsrcrecordid>eNpl0EtLAzEUBeAgCtbqwn8QEAQXU5NMMo9lldYHLbpowV24ndzY1GmmTlKl_96RFly4ulz4OHAOIZecDYTi8pYPnpkqMlUckR5XaZqkhXo7Jj3GGE-4VOKUnIWw6j6RF7xH9Mi9o_-Ceot06KHeBRdoY-nMrZuwRP_R0DuEdaDgDZ06b2rn6WsNEQP9dnFJ5966GNHQsfMuIh3VuEYf6RTjsjHhnJxYqANeHG6fzMej2f1jMnl5eLofThIQsoiJkMaKheClAZlZqbgppUxTa1lWZcitUoaVVQcsW9gKqtLmWDCQoIwRtuJpn1ztczdt87nFEPWq2bZdoaBFzrNMMJnmnbrZq6ptQmjR6k3r1tDuNGf6dz_N9WG_zl7vLTiAv7T_8AdjUm6i</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2716620437</pqid></control><display><type>article</type><title>Eigenvalue Analysis of Timoshenko Beams and Mindlin Plates with Unfitted Finite Element Methods</title><source>Alma/SFX Local Collection</source><creator>Arsalane, Walid ; Bhatia, Manav ; Deaton, Joshua D.</creator><creatorcontrib>Arsalane, Walid ; Bhatia, Manav ; Deaton, Joshua D.</creatorcontrib><description>This paper focuses on finite element methods for eigenvalue analysis of arbitrarily shaped domains with multimaterial or material–void interfaces that do not follow element boundaries. Such configurations are found in problems with evolving discontinuities and interfaces as in, for example, fluid–structure interaction, topology optimization, and crack propagation problems. The differential equations considered include the elliptic operator, Timoshenko beam, and Mindlin plate. The compatibility conditions at the interface are weakly imposed using either Nitsche’s method or Lagrange multipliers, and results are benchmarked against interface-fitted discretizations. Nitsche’s method shows a direct dependence on a penalty parameter, and the Lagrange multiplier method requires additional degrees of freedom but yields robustness. The convergence rate of the discretized forms is computationally determined and shown to be optimal for eigenvalue analysis of both Timoshenko beams and Mindlin plates.</description><identifier>ISSN: 0001-1452</identifier><identifier>EISSN: 1533-385X</identifier><identifier>DOI: 10.2514/1.J058658</identifier><language>eng</language><publisher>Virginia: American Institute of Aeronautics and Astronautics</publisher><subject>Aerospace engineering ; Boundary conditions ; Crack propagation ; Differential equations ; Eigenvalues ; Elliptic functions ; Finite element method ; Fluid-structure interaction ; Geometry ; Interfaces ; Lagrange multiplier ; Methods ; Mindlin plates ; Optimization ; Partial differential equations ; Robustness (mathematics) ; Timoshenko beams ; Topology optimization</subject><ispartof>AIAA journal, 2022-10, Vol.60 (10), p.5967-5983</ispartof><rights>Copyright © 2022 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. All requests for copying and permission to reprint should be submitted to CCC at ; employ the eISSN to initiate your request. See also AIAA Rights and Permissions .</rights><rights>Copyright © 2022 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the eISSN 1533-385X to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a248t-24df2b219da46f451d94433ff06c6e1f55d09cb21f0bfcac9f7e80a4a5dd2fc13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Arsalane, Walid</creatorcontrib><creatorcontrib>Bhatia, Manav</creatorcontrib><creatorcontrib>Deaton, Joshua D.</creatorcontrib><title>Eigenvalue Analysis of Timoshenko Beams and Mindlin Plates with Unfitted Finite Element Methods</title><title>AIAA journal</title><description>This paper focuses on finite element methods for eigenvalue analysis of arbitrarily shaped domains with multimaterial or material–void interfaces that do not follow element boundaries. Such configurations are found in problems with evolving discontinuities and interfaces as in, for example, fluid–structure interaction, topology optimization, and crack propagation problems. The differential equations considered include the elliptic operator, Timoshenko beam, and Mindlin plate. The compatibility conditions at the interface are weakly imposed using either Nitsche’s method or Lagrange multipliers, and results are benchmarked against interface-fitted discretizations. Nitsche’s method shows a direct dependence on a penalty parameter, and the Lagrange multiplier method requires additional degrees of freedom but yields robustness. The convergence rate of the discretized forms is computationally determined and shown to be optimal for eigenvalue analysis of both Timoshenko beams and Mindlin plates.</description><subject>Aerospace engineering</subject><subject>Boundary conditions</subject><subject>Crack propagation</subject><subject>Differential equations</subject><subject>Eigenvalues</subject><subject>Elliptic functions</subject><subject>Finite element method</subject><subject>Fluid-structure interaction</subject><subject>Geometry</subject><subject>Interfaces</subject><subject>Lagrange multiplier</subject><subject>Methods</subject><subject>Mindlin plates</subject><subject>Optimization</subject><subject>Partial differential equations</subject><subject>Robustness (mathematics)</subject><subject>Timoshenko beams</subject><subject>Topology optimization</subject><issn>0001-1452</issn><issn>1533-385X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpl0EtLAzEUBeAgCtbqwn8QEAQXU5NMMo9lldYHLbpowV24ndzY1GmmTlKl_96RFly4ulz4OHAOIZecDYTi8pYPnpkqMlUckR5XaZqkhXo7Jj3GGE-4VOKUnIWw6j6RF7xH9Mi9o_-Ceot06KHeBRdoY-nMrZuwRP_R0DuEdaDgDZ06b2rn6WsNEQP9dnFJ5966GNHQsfMuIh3VuEYf6RTjsjHhnJxYqANeHG6fzMej2f1jMnl5eLofThIQsoiJkMaKheClAZlZqbgppUxTa1lWZcitUoaVVQcsW9gKqtLmWDCQoIwRtuJpn1ztczdt87nFEPWq2bZdoaBFzrNMMJnmnbrZq6ptQmjR6k3r1tDuNGf6dz_N9WG_zl7vLTiAv7T_8AdjUm6i</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Arsalane, Walid</creator><creator>Bhatia, Manav</creator><creator>Deaton, Joshua D.</creator><general>American Institute of Aeronautics and Astronautics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20221001</creationdate><title>Eigenvalue Analysis of Timoshenko Beams and Mindlin Plates with Unfitted Finite Element Methods</title><author>Arsalane, Walid ; Bhatia, Manav ; Deaton, Joshua D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a248t-24df2b219da46f451d94433ff06c6e1f55d09cb21f0bfcac9f7e80a4a5dd2fc13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aerospace engineering</topic><topic>Boundary conditions</topic><topic>Crack propagation</topic><topic>Differential equations</topic><topic>Eigenvalues</topic><topic>Elliptic functions</topic><topic>Finite element method</topic><topic>Fluid-structure interaction</topic><topic>Geometry</topic><topic>Interfaces</topic><topic>Lagrange multiplier</topic><topic>Methods</topic><topic>Mindlin plates</topic><topic>Optimization</topic><topic>Partial differential equations</topic><topic>Robustness (mathematics)</topic><topic>Timoshenko beams</topic><topic>Topology optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arsalane, Walid</creatorcontrib><creatorcontrib>Bhatia, Manav</creatorcontrib><creatorcontrib>Deaton, Joshua D.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>AIAA journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arsalane, Walid</au><au>Bhatia, Manav</au><au>Deaton, Joshua D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Eigenvalue Analysis of Timoshenko Beams and Mindlin Plates with Unfitted Finite Element Methods</atitle><jtitle>AIAA journal</jtitle><date>2022-10-01</date><risdate>2022</risdate><volume>60</volume><issue>10</issue><spage>5967</spage><epage>5983</epage><pages>5967-5983</pages><issn>0001-1452</issn><eissn>1533-385X</eissn><abstract>This paper focuses on finite element methods for eigenvalue analysis of arbitrarily shaped domains with multimaterial or material–void interfaces that do not follow element boundaries. Such configurations are found in problems with evolving discontinuities and interfaces as in, for example, fluid–structure interaction, topology optimization, and crack propagation problems. The differential equations considered include the elliptic operator, Timoshenko beam, and Mindlin plate. The compatibility conditions at the interface are weakly imposed using either Nitsche’s method or Lagrange multipliers, and results are benchmarked against interface-fitted discretizations. Nitsche’s method shows a direct dependence on a penalty parameter, and the Lagrange multiplier method requires additional degrees of freedom but yields robustness. The convergence rate of the discretized forms is computationally determined and shown to be optimal for eigenvalue analysis of both Timoshenko beams and Mindlin plates.</abstract><cop>Virginia</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/1.J058658</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-1452 |
ispartof | AIAA journal, 2022-10, Vol.60 (10), p.5967-5983 |
issn | 0001-1452 1533-385X |
language | eng |
recordid | cdi_crossref_primary_10_2514_1_J058658 |
source | Alma/SFX Local Collection |
subjects | Aerospace engineering Boundary conditions Crack propagation Differential equations Eigenvalues Elliptic functions Finite element method Fluid-structure interaction Geometry Interfaces Lagrange multiplier Methods Mindlin plates Optimization Partial differential equations Robustness (mathematics) Timoshenko beams Topology optimization |
title | Eigenvalue Analysis of Timoshenko Beams and Mindlin Plates with Unfitted Finite Element Methods |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T13%3A34%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Eigenvalue%20Analysis%20of%20Timoshenko%20Beams%20and%20Mindlin%20Plates%20with%20Unfitted%20Finite%20Element%20Methods&rft.jtitle=AIAA%20journal&rft.au=Arsalane,%20Walid&rft.date=2022-10-01&rft.volume=60&rft.issue=10&rft.spage=5967&rft.epage=5983&rft.pages=5967-5983&rft.issn=0001-1452&rft.eissn=1533-385X&rft_id=info:doi/10.2514/1.J058658&rft_dat=%3Cproquest_cross%3E2716620437%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2716620437&rft_id=info:pmid/&rfr_iscdi=true |