Eigenvalue Analysis of Timoshenko Beams and Mindlin Plates with Unfitted Finite Element Methods

This paper focuses on finite element methods for eigenvalue analysis of arbitrarily shaped domains with multimaterial or material–void interfaces that do not follow element boundaries. Such configurations are found in problems with evolving discontinuities and interfaces as in, for example, fluid–st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIAA journal 2022-10, Vol.60 (10), p.5967-5983
Hauptverfasser: Arsalane, Walid, Bhatia, Manav, Deaton, Joshua D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5983
container_issue 10
container_start_page 5967
container_title AIAA journal
container_volume 60
creator Arsalane, Walid
Bhatia, Manav
Deaton, Joshua D.
description This paper focuses on finite element methods for eigenvalue analysis of arbitrarily shaped domains with multimaterial or material–void interfaces that do not follow element boundaries. Such configurations are found in problems with evolving discontinuities and interfaces as in, for example, fluid–structure interaction, topology optimization, and crack propagation problems. The differential equations considered include the elliptic operator, Timoshenko beam, and Mindlin plate. The compatibility conditions at the interface are weakly imposed using either Nitsche’s method or Lagrange multipliers, and results are benchmarked against interface-fitted discretizations. Nitsche’s method shows a direct dependence on a penalty parameter, and the Lagrange multiplier method requires additional degrees of freedom but yields robustness. The convergence rate of the discretized forms is computationally determined and shown to be optimal for eigenvalue analysis of both Timoshenko beams and Mindlin plates.
doi_str_mv 10.2514/1.J058658
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_2514_1_J058658</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2716620437</sourcerecordid><originalsourceid>FETCH-LOGICAL-a248t-24df2b219da46f451d94433ff06c6e1f55d09cb21f0bfcac9f7e80a4a5dd2fc13</originalsourceid><addsrcrecordid>eNpl0EtLAzEUBeAgCtbqwn8QEAQXU5NMMo9lldYHLbpowV24ndzY1GmmTlKl_96RFly4ulz4OHAOIZecDYTi8pYPnpkqMlUckR5XaZqkhXo7Jj3GGE-4VOKUnIWw6j6RF7xH9Mi9o_-Ceot06KHeBRdoY-nMrZuwRP_R0DuEdaDgDZ06b2rn6WsNEQP9dnFJ5966GNHQsfMuIh3VuEYf6RTjsjHhnJxYqANeHG6fzMej2f1jMnl5eLofThIQsoiJkMaKheClAZlZqbgppUxTa1lWZcitUoaVVQcsW9gKqtLmWDCQoIwRtuJpn1ztczdt87nFEPWq2bZdoaBFzrNMMJnmnbrZq6ptQmjR6k3r1tDuNGf6dz_N9WG_zl7vLTiAv7T_8AdjUm6i</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2716620437</pqid></control><display><type>article</type><title>Eigenvalue Analysis of Timoshenko Beams and Mindlin Plates with Unfitted Finite Element Methods</title><source>Alma/SFX Local Collection</source><creator>Arsalane, Walid ; Bhatia, Manav ; Deaton, Joshua D.</creator><creatorcontrib>Arsalane, Walid ; Bhatia, Manav ; Deaton, Joshua D.</creatorcontrib><description>This paper focuses on finite element methods for eigenvalue analysis of arbitrarily shaped domains with multimaterial or material–void interfaces that do not follow element boundaries. Such configurations are found in problems with evolving discontinuities and interfaces as in, for example, fluid–structure interaction, topology optimization, and crack propagation problems. The differential equations considered include the elliptic operator, Timoshenko beam, and Mindlin plate. The compatibility conditions at the interface are weakly imposed using either Nitsche’s method or Lagrange multipliers, and results are benchmarked against interface-fitted discretizations. Nitsche’s method shows a direct dependence on a penalty parameter, and the Lagrange multiplier method requires additional degrees of freedom but yields robustness. The convergence rate of the discretized forms is computationally determined and shown to be optimal for eigenvalue analysis of both Timoshenko beams and Mindlin plates.</description><identifier>ISSN: 0001-1452</identifier><identifier>EISSN: 1533-385X</identifier><identifier>DOI: 10.2514/1.J058658</identifier><language>eng</language><publisher>Virginia: American Institute of Aeronautics and Astronautics</publisher><subject>Aerospace engineering ; Boundary conditions ; Crack propagation ; Differential equations ; Eigenvalues ; Elliptic functions ; Finite element method ; Fluid-structure interaction ; Geometry ; Interfaces ; Lagrange multiplier ; Methods ; Mindlin plates ; Optimization ; Partial differential equations ; Robustness (mathematics) ; Timoshenko beams ; Topology optimization</subject><ispartof>AIAA journal, 2022-10, Vol.60 (10), p.5967-5983</ispartof><rights>Copyright © 2022 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. All requests for copying and permission to reprint should be submitted to CCC at ; employ the eISSN to initiate your request. See also AIAA Rights and Permissions .</rights><rights>Copyright © 2022 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the eISSN 1533-385X to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a248t-24df2b219da46f451d94433ff06c6e1f55d09cb21f0bfcac9f7e80a4a5dd2fc13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Arsalane, Walid</creatorcontrib><creatorcontrib>Bhatia, Manav</creatorcontrib><creatorcontrib>Deaton, Joshua D.</creatorcontrib><title>Eigenvalue Analysis of Timoshenko Beams and Mindlin Plates with Unfitted Finite Element Methods</title><title>AIAA journal</title><description>This paper focuses on finite element methods for eigenvalue analysis of arbitrarily shaped domains with multimaterial or material–void interfaces that do not follow element boundaries. Such configurations are found in problems with evolving discontinuities and interfaces as in, for example, fluid–structure interaction, topology optimization, and crack propagation problems. The differential equations considered include the elliptic operator, Timoshenko beam, and Mindlin plate. The compatibility conditions at the interface are weakly imposed using either Nitsche’s method or Lagrange multipliers, and results are benchmarked against interface-fitted discretizations. Nitsche’s method shows a direct dependence on a penalty parameter, and the Lagrange multiplier method requires additional degrees of freedom but yields robustness. The convergence rate of the discretized forms is computationally determined and shown to be optimal for eigenvalue analysis of both Timoshenko beams and Mindlin plates.</description><subject>Aerospace engineering</subject><subject>Boundary conditions</subject><subject>Crack propagation</subject><subject>Differential equations</subject><subject>Eigenvalues</subject><subject>Elliptic functions</subject><subject>Finite element method</subject><subject>Fluid-structure interaction</subject><subject>Geometry</subject><subject>Interfaces</subject><subject>Lagrange multiplier</subject><subject>Methods</subject><subject>Mindlin plates</subject><subject>Optimization</subject><subject>Partial differential equations</subject><subject>Robustness (mathematics)</subject><subject>Timoshenko beams</subject><subject>Topology optimization</subject><issn>0001-1452</issn><issn>1533-385X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpl0EtLAzEUBeAgCtbqwn8QEAQXU5NMMo9lldYHLbpowV24ndzY1GmmTlKl_96RFly4ulz4OHAOIZecDYTi8pYPnpkqMlUckR5XaZqkhXo7Jj3GGE-4VOKUnIWw6j6RF7xH9Mi9o_-Ceot06KHeBRdoY-nMrZuwRP_R0DuEdaDgDZ06b2rn6WsNEQP9dnFJ5966GNHQsfMuIh3VuEYf6RTjsjHhnJxYqANeHG6fzMej2f1jMnl5eLofThIQsoiJkMaKheClAZlZqbgppUxTa1lWZcitUoaVVQcsW9gKqtLmWDCQoIwRtuJpn1ztczdt87nFEPWq2bZdoaBFzrNMMJnmnbrZq6ptQmjR6k3r1tDuNGf6dz_N9WG_zl7vLTiAv7T_8AdjUm6i</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Arsalane, Walid</creator><creator>Bhatia, Manav</creator><creator>Deaton, Joshua D.</creator><general>American Institute of Aeronautics and Astronautics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20221001</creationdate><title>Eigenvalue Analysis of Timoshenko Beams and Mindlin Plates with Unfitted Finite Element Methods</title><author>Arsalane, Walid ; Bhatia, Manav ; Deaton, Joshua D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a248t-24df2b219da46f451d94433ff06c6e1f55d09cb21f0bfcac9f7e80a4a5dd2fc13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aerospace engineering</topic><topic>Boundary conditions</topic><topic>Crack propagation</topic><topic>Differential equations</topic><topic>Eigenvalues</topic><topic>Elliptic functions</topic><topic>Finite element method</topic><topic>Fluid-structure interaction</topic><topic>Geometry</topic><topic>Interfaces</topic><topic>Lagrange multiplier</topic><topic>Methods</topic><topic>Mindlin plates</topic><topic>Optimization</topic><topic>Partial differential equations</topic><topic>Robustness (mathematics)</topic><topic>Timoshenko beams</topic><topic>Topology optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arsalane, Walid</creatorcontrib><creatorcontrib>Bhatia, Manav</creatorcontrib><creatorcontrib>Deaton, Joshua D.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>AIAA journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arsalane, Walid</au><au>Bhatia, Manav</au><au>Deaton, Joshua D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Eigenvalue Analysis of Timoshenko Beams and Mindlin Plates with Unfitted Finite Element Methods</atitle><jtitle>AIAA journal</jtitle><date>2022-10-01</date><risdate>2022</risdate><volume>60</volume><issue>10</issue><spage>5967</spage><epage>5983</epage><pages>5967-5983</pages><issn>0001-1452</issn><eissn>1533-385X</eissn><abstract>This paper focuses on finite element methods for eigenvalue analysis of arbitrarily shaped domains with multimaterial or material–void interfaces that do not follow element boundaries. Such configurations are found in problems with evolving discontinuities and interfaces as in, for example, fluid–structure interaction, topology optimization, and crack propagation problems. The differential equations considered include the elliptic operator, Timoshenko beam, and Mindlin plate. The compatibility conditions at the interface are weakly imposed using either Nitsche’s method or Lagrange multipliers, and results are benchmarked against interface-fitted discretizations. Nitsche’s method shows a direct dependence on a penalty parameter, and the Lagrange multiplier method requires additional degrees of freedom but yields robustness. The convergence rate of the discretized forms is computationally determined and shown to be optimal for eigenvalue analysis of both Timoshenko beams and Mindlin plates.</abstract><cop>Virginia</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/1.J058658</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-1452
ispartof AIAA journal, 2022-10, Vol.60 (10), p.5967-5983
issn 0001-1452
1533-385X
language eng
recordid cdi_crossref_primary_10_2514_1_J058658
source Alma/SFX Local Collection
subjects Aerospace engineering
Boundary conditions
Crack propagation
Differential equations
Eigenvalues
Elliptic functions
Finite element method
Fluid-structure interaction
Geometry
Interfaces
Lagrange multiplier
Methods
Mindlin plates
Optimization
Partial differential equations
Robustness (mathematics)
Timoshenko beams
Topology optimization
title Eigenvalue Analysis of Timoshenko Beams and Mindlin Plates with Unfitted Finite Element Methods
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T13%3A34%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Eigenvalue%20Analysis%20of%20Timoshenko%20Beams%20and%20Mindlin%20Plates%20with%20Unfitted%20Finite%20Element%20Methods&rft.jtitle=AIAA%20journal&rft.au=Arsalane,%20Walid&rft.date=2022-10-01&rft.volume=60&rft.issue=10&rft.spage=5967&rft.epage=5983&rft.pages=5967-5983&rft.issn=0001-1452&rft.eissn=1533-385X&rft_id=info:doi/10.2514/1.J058658&rft_dat=%3Cproquest_cross%3E2716620437%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2716620437&rft_id=info:pmid/&rfr_iscdi=true