Improved Mars Helicopter Aerodynamic Rotor Model for Comprehensive Analyses
The Mars Helicopter is part of the NASA Mars 2020 rover mission scheduled to launch in July of 2020. Its goal is to demonstrate the viability and potential of heavier-than-air vehicles in the Martian atmosphere. The low density of the Martian atmosphere and the relatively small-scale rotor result in...
Gespeichert in:
Veröffentlicht in: | AIAA journal 2019-09, Vol.57 (9), p.3969-3979 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3979 |
---|---|
container_issue | 9 |
container_start_page | 3969 |
container_title | AIAA journal |
container_volume | 57 |
creator | Koning, Witold J. F Johnson, Wayne Grip, Håvard F |
description | The Mars Helicopter is part of the NASA Mars 2020 rover mission scheduled to launch in July of 2020. Its goal is to demonstrate the viability and potential of heavier-than-air vehicles in the Martian atmosphere. The low density of the Martian atmosphere and the relatively small-scale rotor result in flows with very low Reynolds number, reducing the lifting force and lifting efficiency, respectively. This paper describes the generation of the improved Mars Helicopter aerodynamic rotor model. The goal is to generate a performance model for the Mars Helicopter rotor using a free wake analysis in CAMRADII. The improvements in the analysis are twofold and are expanded on from two prior publications. First, the fidelity of the simulations is increased by performing higher-order time-accurate OVERFLOW simulations allowing for higher-accuracy aerodynamic coefficients and a better understanding of the boundary-layer behavior. Second, a model is generated for the testing conditions in the 25-ft-diam Space Simulator at the Jet Propulsion Laboratory, allowing for better correlation of rotor performance figures. The higher temperatures in the experiment are expected to give conservative performance estimates, as they give rise to an increase in speed of sound and decrease in observed Reynolds numbers. |
doi_str_mv | 10.2514/1.J058045 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_2514_1_J058045</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2283458743</sourcerecordid><originalsourceid>FETCH-LOGICAL-a323t-bb8311604d5dc2aa0f06e29c94bd23197298ec993461b6d01624228b5f49ef283</originalsourceid><addsrcrecordid>eNplkE9LAzEUxIMoWKsHv8GCIHjYmpc_2-RYitpqiyAK3kJ28xa37DY12Rb67Y204MHTvIHfG4Yh5BroiEkQ9zB6plJRIU_IACTnOVfy85QMKKWQg5DsnFzEuEqOjRUMyMu82wS_Q5ctbYjZDNum8pseQzbB4N1-bbumyt5870O29A7brE7X1Kcv_MJ1bHaYTda23UeMl-Sstm3Eq6MOycfjw_t0li9en-bTySK3nPE-L0vFAQoqnHQVs5bWtECmKy1KxzjoMdMKK625KKAsHIWCCcZUKWuhsWaKD8nNITc1_95i7M3Kb0MqEU3iuJBqLHii7g5UFXyMAWuzCU1nw94ANb9bGTDHrRJ7e2BtY-1f2n_wBxBoZgE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2283458743</pqid></control><display><type>article</type><title>Improved Mars Helicopter Aerodynamic Rotor Model for Comprehensive Analyses</title><source>Alma/SFX Local Collection</source><creator>Koning, Witold J. F ; Johnson, Wayne ; Grip, Håvard F</creator><creatorcontrib>Koning, Witold J. F ; Johnson, Wayne ; Grip, Håvard F</creatorcontrib><description>The Mars Helicopter is part of the NASA Mars 2020 rover mission scheduled to launch in July of 2020. Its goal is to demonstrate the viability and potential of heavier-than-air vehicles in the Martian atmosphere. The low density of the Martian atmosphere and the relatively small-scale rotor result in flows with very low Reynolds number, reducing the lifting force and lifting efficiency, respectively. This paper describes the generation of the improved Mars Helicopter aerodynamic rotor model. The goal is to generate a performance model for the Mars Helicopter rotor using a free wake analysis in CAMRADII. The improvements in the analysis are twofold and are expanded on from two prior publications. First, the fidelity of the simulations is increased by performing higher-order time-accurate OVERFLOW simulations allowing for higher-accuracy aerodynamic coefficients and a better understanding of the boundary-layer behavior. Second, a model is generated for the testing conditions in the 25-ft-diam Space Simulator at the Jet Propulsion Laboratory, allowing for better correlation of rotor performance figures. The higher temperatures in the experiment are expected to give conservative performance estimates, as they give rise to an increase in speed of sound and decrease in observed Reynolds numbers.</description><identifier>ISSN: 0001-1452</identifier><identifier>EISSN: 1533-385X</identifier><identifier>DOI: 10.2514/1.J058045</identifier><language>eng</language><publisher>Virginia: American Institute of Aeronautics and Astronautics</publisher><subject>Aerodynamic coefficients ; Aerodynamics ; Atmosphere ; Computer simulation ; Flight tests ; Fluid flow ; Helicopter wakes ; Mars ; Mars atmosphere ; Mars rovers ; Overflow ; Reynolds number ; Rotary wings ; Simulator fidelity ; Viability</subject><ispartof>AIAA journal, 2019-09, Vol.57 (9), p.3969-3979</ispartof><rights>This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States. All requests for copying and permission to reprint should be submitted to CCC at ; employ the eISSN to initiate your request. See also AIAA Rights and Permissions .</rights><rights>This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the eISSN 1533-385X to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a323t-bb8311604d5dc2aa0f06e29c94bd23197298ec993461b6d01624228b5f49ef283</citedby><cites>FETCH-LOGICAL-a323t-bb8311604d5dc2aa0f06e29c94bd23197298ec993461b6d01624228b5f49ef283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27926,27927</link.rule.ids></links><search><creatorcontrib>Koning, Witold J. F</creatorcontrib><creatorcontrib>Johnson, Wayne</creatorcontrib><creatorcontrib>Grip, Håvard F</creatorcontrib><title>Improved Mars Helicopter Aerodynamic Rotor Model for Comprehensive Analyses</title><title>AIAA journal</title><description>The Mars Helicopter is part of the NASA Mars 2020 rover mission scheduled to launch in July of 2020. Its goal is to demonstrate the viability and potential of heavier-than-air vehicles in the Martian atmosphere. The low density of the Martian atmosphere and the relatively small-scale rotor result in flows with very low Reynolds number, reducing the lifting force and lifting efficiency, respectively. This paper describes the generation of the improved Mars Helicopter aerodynamic rotor model. The goal is to generate a performance model for the Mars Helicopter rotor using a free wake analysis in CAMRADII. The improvements in the analysis are twofold and are expanded on from two prior publications. First, the fidelity of the simulations is increased by performing higher-order time-accurate OVERFLOW simulations allowing for higher-accuracy aerodynamic coefficients and a better understanding of the boundary-layer behavior. Second, a model is generated for the testing conditions in the 25-ft-diam Space Simulator at the Jet Propulsion Laboratory, allowing for better correlation of rotor performance figures. The higher temperatures in the experiment are expected to give conservative performance estimates, as they give rise to an increase in speed of sound and decrease in observed Reynolds numbers.</description><subject>Aerodynamic coefficients</subject><subject>Aerodynamics</subject><subject>Atmosphere</subject><subject>Computer simulation</subject><subject>Flight tests</subject><subject>Fluid flow</subject><subject>Helicopter wakes</subject><subject>Mars</subject><subject>Mars atmosphere</subject><subject>Mars rovers</subject><subject>Overflow</subject><subject>Reynolds number</subject><subject>Rotary wings</subject><subject>Simulator fidelity</subject><subject>Viability</subject><issn>0001-1452</issn><issn>1533-385X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNplkE9LAzEUxIMoWKsHv8GCIHjYmpc_2-RYitpqiyAK3kJ28xa37DY12Rb67Y204MHTvIHfG4Yh5BroiEkQ9zB6plJRIU_IACTnOVfy85QMKKWQg5DsnFzEuEqOjRUMyMu82wS_Q5ctbYjZDNum8pseQzbB4N1-bbumyt5870O29A7brE7X1Kcv_MJ1bHaYTda23UeMl-Sstm3Eq6MOycfjw_t0li9en-bTySK3nPE-L0vFAQoqnHQVs5bWtECmKy1KxzjoMdMKK625KKAsHIWCCcZUKWuhsWaKD8nNITc1_95i7M3Kb0MqEU3iuJBqLHii7g5UFXyMAWuzCU1nw94ANb9bGTDHrRJ7e2BtY-1f2n_wBxBoZgE</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Koning, Witold J. F</creator><creator>Johnson, Wayne</creator><creator>Grip, Håvard F</creator><general>American Institute of Aeronautics and Astronautics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20190901</creationdate><title>Improved Mars Helicopter Aerodynamic Rotor Model for Comprehensive Analyses</title><author>Koning, Witold J. F ; Johnson, Wayne ; Grip, Håvard F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a323t-bb8311604d5dc2aa0f06e29c94bd23197298ec993461b6d01624228b5f49ef283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aerodynamic coefficients</topic><topic>Aerodynamics</topic><topic>Atmosphere</topic><topic>Computer simulation</topic><topic>Flight tests</topic><topic>Fluid flow</topic><topic>Helicopter wakes</topic><topic>Mars</topic><topic>Mars atmosphere</topic><topic>Mars rovers</topic><topic>Overflow</topic><topic>Reynolds number</topic><topic>Rotary wings</topic><topic>Simulator fidelity</topic><topic>Viability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koning, Witold J. F</creatorcontrib><creatorcontrib>Johnson, Wayne</creatorcontrib><creatorcontrib>Grip, Håvard F</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>AIAA journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koning, Witold J. F</au><au>Johnson, Wayne</au><au>Grip, Håvard F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved Mars Helicopter Aerodynamic Rotor Model for Comprehensive Analyses</atitle><jtitle>AIAA journal</jtitle><date>2019-09-01</date><risdate>2019</risdate><volume>57</volume><issue>9</issue><spage>3969</spage><epage>3979</epage><pages>3969-3979</pages><issn>0001-1452</issn><eissn>1533-385X</eissn><abstract>The Mars Helicopter is part of the NASA Mars 2020 rover mission scheduled to launch in July of 2020. Its goal is to demonstrate the viability and potential of heavier-than-air vehicles in the Martian atmosphere. The low density of the Martian atmosphere and the relatively small-scale rotor result in flows with very low Reynolds number, reducing the lifting force and lifting efficiency, respectively. This paper describes the generation of the improved Mars Helicopter aerodynamic rotor model. The goal is to generate a performance model for the Mars Helicopter rotor using a free wake analysis in CAMRADII. The improvements in the analysis are twofold and are expanded on from two prior publications. First, the fidelity of the simulations is increased by performing higher-order time-accurate OVERFLOW simulations allowing for higher-accuracy aerodynamic coefficients and a better understanding of the boundary-layer behavior. Second, a model is generated for the testing conditions in the 25-ft-diam Space Simulator at the Jet Propulsion Laboratory, allowing for better correlation of rotor performance figures. The higher temperatures in the experiment are expected to give conservative performance estimates, as they give rise to an increase in speed of sound and decrease in observed Reynolds numbers.</abstract><cop>Virginia</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/1.J058045</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-1452 |
ispartof | AIAA journal, 2019-09, Vol.57 (9), p.3969-3979 |
issn | 0001-1452 1533-385X |
language | eng |
recordid | cdi_crossref_primary_10_2514_1_J058045 |
source | Alma/SFX Local Collection |
subjects | Aerodynamic coefficients Aerodynamics Atmosphere Computer simulation Flight tests Fluid flow Helicopter wakes Mars Mars atmosphere Mars rovers Overflow Reynolds number Rotary wings Simulator fidelity Viability |
title | Improved Mars Helicopter Aerodynamic Rotor Model for Comprehensive Analyses |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T17%3A26%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20Mars%20Helicopter%20Aerodynamic%20Rotor%20Model%20for%20Comprehensive%20Analyses&rft.jtitle=AIAA%20journal&rft.au=Koning,%20Witold%20J.%20F&rft.date=2019-09-01&rft.volume=57&rft.issue=9&rft.spage=3969&rft.epage=3979&rft.pages=3969-3979&rft.issn=0001-1452&rft.eissn=1533-385X&rft_id=info:doi/10.2514/1.J058045&rft_dat=%3Cproquest_cross%3E2283458743%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2283458743&rft_id=info:pmid/&rfr_iscdi=true |