Improved Mars Helicopter Aerodynamic Rotor Model for Comprehensive Analyses

The Mars Helicopter is part of the NASA Mars 2020 rover mission scheduled to launch in July of 2020. Its goal is to demonstrate the viability and potential of heavier-than-air vehicles in the Martian atmosphere. The low density of the Martian atmosphere and the relatively small-scale rotor result in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIAA journal 2019-09, Vol.57 (9), p.3969-3979
Hauptverfasser: Koning, Witold J. F, Johnson, Wayne, Grip, Håvard F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3979
container_issue 9
container_start_page 3969
container_title AIAA journal
container_volume 57
creator Koning, Witold J. F
Johnson, Wayne
Grip, Håvard F
description The Mars Helicopter is part of the NASA Mars 2020 rover mission scheduled to launch in July of 2020. Its goal is to demonstrate the viability and potential of heavier-than-air vehicles in the Martian atmosphere. The low density of the Martian atmosphere and the relatively small-scale rotor result in flows with very low Reynolds number, reducing the lifting force and lifting efficiency, respectively. This paper describes the generation of the improved Mars Helicopter aerodynamic rotor model. The goal is to generate a performance model for the Mars Helicopter rotor using a free wake analysis in CAMRADII. The improvements in the analysis are twofold and are expanded on from two prior publications. First, the fidelity of the simulations is increased by performing higher-order time-accurate OVERFLOW simulations allowing for higher-accuracy aerodynamic coefficients and a better understanding of the boundary-layer behavior. Second, a model is generated for the testing conditions in the 25-ft-diam Space Simulator at the Jet Propulsion Laboratory, allowing for better correlation of rotor performance figures. The higher temperatures in the experiment are expected to give conservative performance estimates, as they give rise to an increase in speed of sound and decrease in observed Reynolds numbers.
doi_str_mv 10.2514/1.J058045
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_2514_1_J058045</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2283458743</sourcerecordid><originalsourceid>FETCH-LOGICAL-a323t-bb8311604d5dc2aa0f06e29c94bd23197298ec993461b6d01624228b5f49ef283</originalsourceid><addsrcrecordid>eNplkE9LAzEUxIMoWKsHv8GCIHjYmpc_2-RYitpqiyAK3kJ28xa37DY12Rb67Y204MHTvIHfG4Yh5BroiEkQ9zB6plJRIU_IACTnOVfy85QMKKWQg5DsnFzEuEqOjRUMyMu82wS_Q5ctbYjZDNum8pseQzbB4N1-bbumyt5870O29A7brE7X1Kcv_MJ1bHaYTda23UeMl-Sstm3Eq6MOycfjw_t0li9en-bTySK3nPE-L0vFAQoqnHQVs5bWtECmKy1KxzjoMdMKK625KKAsHIWCCcZUKWuhsWaKD8nNITc1_95i7M3Kb0MqEU3iuJBqLHii7g5UFXyMAWuzCU1nw94ANb9bGTDHrRJ7e2BtY-1f2n_wBxBoZgE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2283458743</pqid></control><display><type>article</type><title>Improved Mars Helicopter Aerodynamic Rotor Model for Comprehensive Analyses</title><source>Alma/SFX Local Collection</source><creator>Koning, Witold J. F ; Johnson, Wayne ; Grip, Håvard F</creator><creatorcontrib>Koning, Witold J. F ; Johnson, Wayne ; Grip, Håvard F</creatorcontrib><description>The Mars Helicopter is part of the NASA Mars 2020 rover mission scheduled to launch in July of 2020. Its goal is to demonstrate the viability and potential of heavier-than-air vehicles in the Martian atmosphere. The low density of the Martian atmosphere and the relatively small-scale rotor result in flows with very low Reynolds number, reducing the lifting force and lifting efficiency, respectively. This paper describes the generation of the improved Mars Helicopter aerodynamic rotor model. The goal is to generate a performance model for the Mars Helicopter rotor using a free wake analysis in CAMRADII. The improvements in the analysis are twofold and are expanded on from two prior publications. First, the fidelity of the simulations is increased by performing higher-order time-accurate OVERFLOW simulations allowing for higher-accuracy aerodynamic coefficients and a better understanding of the boundary-layer behavior. Second, a model is generated for the testing conditions in the 25-ft-diam Space Simulator at the Jet Propulsion Laboratory, allowing for better correlation of rotor performance figures. The higher temperatures in the experiment are expected to give conservative performance estimates, as they give rise to an increase in speed of sound and decrease in observed Reynolds numbers.</description><identifier>ISSN: 0001-1452</identifier><identifier>EISSN: 1533-385X</identifier><identifier>DOI: 10.2514/1.J058045</identifier><language>eng</language><publisher>Virginia: American Institute of Aeronautics and Astronautics</publisher><subject>Aerodynamic coefficients ; Aerodynamics ; Atmosphere ; Computer simulation ; Flight tests ; Fluid flow ; Helicopter wakes ; Mars ; Mars atmosphere ; Mars rovers ; Overflow ; Reynolds number ; Rotary wings ; Simulator fidelity ; Viability</subject><ispartof>AIAA journal, 2019-09, Vol.57 (9), p.3969-3979</ispartof><rights>This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States. All requests for copying and permission to reprint should be submitted to CCC at ; employ the eISSN to initiate your request. See also AIAA Rights and Permissions .</rights><rights>This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the eISSN 1533-385X to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a323t-bb8311604d5dc2aa0f06e29c94bd23197298ec993461b6d01624228b5f49ef283</citedby><cites>FETCH-LOGICAL-a323t-bb8311604d5dc2aa0f06e29c94bd23197298ec993461b6d01624228b5f49ef283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27926,27927</link.rule.ids></links><search><creatorcontrib>Koning, Witold J. F</creatorcontrib><creatorcontrib>Johnson, Wayne</creatorcontrib><creatorcontrib>Grip, Håvard F</creatorcontrib><title>Improved Mars Helicopter Aerodynamic Rotor Model for Comprehensive Analyses</title><title>AIAA journal</title><description>The Mars Helicopter is part of the NASA Mars 2020 rover mission scheduled to launch in July of 2020. Its goal is to demonstrate the viability and potential of heavier-than-air vehicles in the Martian atmosphere. The low density of the Martian atmosphere and the relatively small-scale rotor result in flows with very low Reynolds number, reducing the lifting force and lifting efficiency, respectively. This paper describes the generation of the improved Mars Helicopter aerodynamic rotor model. The goal is to generate a performance model for the Mars Helicopter rotor using a free wake analysis in CAMRADII. The improvements in the analysis are twofold and are expanded on from two prior publications. First, the fidelity of the simulations is increased by performing higher-order time-accurate OVERFLOW simulations allowing for higher-accuracy aerodynamic coefficients and a better understanding of the boundary-layer behavior. Second, a model is generated for the testing conditions in the 25-ft-diam Space Simulator at the Jet Propulsion Laboratory, allowing for better correlation of rotor performance figures. The higher temperatures in the experiment are expected to give conservative performance estimates, as they give rise to an increase in speed of sound and decrease in observed Reynolds numbers.</description><subject>Aerodynamic coefficients</subject><subject>Aerodynamics</subject><subject>Atmosphere</subject><subject>Computer simulation</subject><subject>Flight tests</subject><subject>Fluid flow</subject><subject>Helicopter wakes</subject><subject>Mars</subject><subject>Mars atmosphere</subject><subject>Mars rovers</subject><subject>Overflow</subject><subject>Reynolds number</subject><subject>Rotary wings</subject><subject>Simulator fidelity</subject><subject>Viability</subject><issn>0001-1452</issn><issn>1533-385X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNplkE9LAzEUxIMoWKsHv8GCIHjYmpc_2-RYitpqiyAK3kJ28xa37DY12Rb67Y204MHTvIHfG4Yh5BroiEkQ9zB6plJRIU_IACTnOVfy85QMKKWQg5DsnFzEuEqOjRUMyMu82wS_Q5ctbYjZDNum8pseQzbB4N1-bbumyt5870O29A7brE7X1Kcv_MJ1bHaYTda23UeMl-Sstm3Eq6MOycfjw_t0li9en-bTySK3nPE-L0vFAQoqnHQVs5bWtECmKy1KxzjoMdMKK625KKAsHIWCCcZUKWuhsWaKD8nNITc1_95i7M3Kb0MqEU3iuJBqLHii7g5UFXyMAWuzCU1nw94ANb9bGTDHrRJ7e2BtY-1f2n_wBxBoZgE</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Koning, Witold J. F</creator><creator>Johnson, Wayne</creator><creator>Grip, Håvard F</creator><general>American Institute of Aeronautics and Astronautics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20190901</creationdate><title>Improved Mars Helicopter Aerodynamic Rotor Model for Comprehensive Analyses</title><author>Koning, Witold J. F ; Johnson, Wayne ; Grip, Håvard F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a323t-bb8311604d5dc2aa0f06e29c94bd23197298ec993461b6d01624228b5f49ef283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aerodynamic coefficients</topic><topic>Aerodynamics</topic><topic>Atmosphere</topic><topic>Computer simulation</topic><topic>Flight tests</topic><topic>Fluid flow</topic><topic>Helicopter wakes</topic><topic>Mars</topic><topic>Mars atmosphere</topic><topic>Mars rovers</topic><topic>Overflow</topic><topic>Reynolds number</topic><topic>Rotary wings</topic><topic>Simulator fidelity</topic><topic>Viability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koning, Witold J. F</creatorcontrib><creatorcontrib>Johnson, Wayne</creatorcontrib><creatorcontrib>Grip, Håvard F</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>AIAA journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koning, Witold J. F</au><au>Johnson, Wayne</au><au>Grip, Håvard F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved Mars Helicopter Aerodynamic Rotor Model for Comprehensive Analyses</atitle><jtitle>AIAA journal</jtitle><date>2019-09-01</date><risdate>2019</risdate><volume>57</volume><issue>9</issue><spage>3969</spage><epage>3979</epage><pages>3969-3979</pages><issn>0001-1452</issn><eissn>1533-385X</eissn><abstract>The Mars Helicopter is part of the NASA Mars 2020 rover mission scheduled to launch in July of 2020. Its goal is to demonstrate the viability and potential of heavier-than-air vehicles in the Martian atmosphere. The low density of the Martian atmosphere and the relatively small-scale rotor result in flows with very low Reynolds number, reducing the lifting force and lifting efficiency, respectively. This paper describes the generation of the improved Mars Helicopter aerodynamic rotor model. The goal is to generate a performance model for the Mars Helicopter rotor using a free wake analysis in CAMRADII. The improvements in the analysis are twofold and are expanded on from two prior publications. First, the fidelity of the simulations is increased by performing higher-order time-accurate OVERFLOW simulations allowing for higher-accuracy aerodynamic coefficients and a better understanding of the boundary-layer behavior. Second, a model is generated for the testing conditions in the 25-ft-diam Space Simulator at the Jet Propulsion Laboratory, allowing for better correlation of rotor performance figures. The higher temperatures in the experiment are expected to give conservative performance estimates, as they give rise to an increase in speed of sound and decrease in observed Reynolds numbers.</abstract><cop>Virginia</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/1.J058045</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0001-1452
ispartof AIAA journal, 2019-09, Vol.57 (9), p.3969-3979
issn 0001-1452
1533-385X
language eng
recordid cdi_crossref_primary_10_2514_1_J058045
source Alma/SFX Local Collection
subjects Aerodynamic coefficients
Aerodynamics
Atmosphere
Computer simulation
Flight tests
Fluid flow
Helicopter wakes
Mars
Mars atmosphere
Mars rovers
Overflow
Reynolds number
Rotary wings
Simulator fidelity
Viability
title Improved Mars Helicopter Aerodynamic Rotor Model for Comprehensive Analyses
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T17%3A26%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20Mars%20Helicopter%20Aerodynamic%20Rotor%20Model%20for%20Comprehensive%20Analyses&rft.jtitle=AIAA%20journal&rft.au=Koning,%20Witold%20J.%20F&rft.date=2019-09-01&rft.volume=57&rft.issue=9&rft.spage=3969&rft.epage=3979&rft.pages=3969-3979&rft.issn=0001-1452&rft.eissn=1533-385X&rft_id=info:doi/10.2514/1.J058045&rft_dat=%3Cproquest_cross%3E2283458743%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2283458743&rft_id=info:pmid/&rfr_iscdi=true