Three-Dimensional Stabilized Finite Elements for Compressible Navier–Stokes

In this paper, a stabilized finite-element approach is used in the development of a high-order flow solver for compressible flows. The streamline/upwind Petrov–Galerkin discretization is used for the Navier–Stokes equations, and a fully implicit methodology is used for advancing the solution at each...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIAA journal 2013-06, Vol.51 (6), p.1404-1419
Hauptverfasser: Erwin, J. Taylor, Anderson, W. Kyle, Kapadia, Sagar, Wang, Li
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1419
container_issue 6
container_start_page 1404
container_title AIAA journal
container_volume 51
creator Erwin, J. Taylor
Anderson, W. Kyle
Kapadia, Sagar
Wang, Li
description In this paper, a stabilized finite-element approach is used in the development of a high-order flow solver for compressible flows. The streamline/upwind Petrov–Galerkin discretization is used for the Navier–Stokes equations, and a fully implicit methodology is used for advancing the solution at each time step. The order of accuracy is assessed for both inviscid and viscous flows using the method of manufactured solutions. For two-dimensional flow, a mesh-curving strategy is discussed that allows high-aspect-ratio curved elements in viscous flow regions. In addition, the effects of curved elements are evaluated in two dimensions using the method of manufacture solutions. Finally, test cases are presented in two and three dimensions and compared with well-established results and/or experimental data.
doi_str_mv 10.2514/1.J051778
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_2514_1_J051778</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2491341503</sourcerecordid><originalsourceid>FETCH-LOGICAL-a412t-26b896cbf0267ce184a892ba0f1fa3db9ecdb81b3cd711e2f948f65f782214903</originalsourceid><addsrcrecordid>eNqNkctKxEAQRRtRcHws_IOAKLqIdvUj3VnKOOMDH4tRcBc6STW2ZpKxOyPoyn_wD_0SM8wgoiCuiqJO3eLWJWQL6AGTIA7h4JxKUEovkR5IzmOu5d0y6VFKIQYh2SpZC-Gh65jS0COXN_ceMT52Y6yDa2pTRaPW5K5yr1hGQ1e7FqNBhd24DZFtfNRvxhOPIbi8wujKPDv0H2_vo7Z5xLBBVqypAm4u6jq5HQ5u-qfxxfXJWf_oIjYCWBuzJNdpUuSWskQVCFoYnbLcUAvW8DJPsShzDTkvSgWAzKZC20RapRkDkVK-TvbmuhPfPE0xtNnYhQKrytTYTEMGApRWmtN_okmaKtah2z_Qh2bqu5eEjIkUuABJ-V8U8ERJQUHJjtqfU4VvQvBos4l3Y-NfMqDZLKkMskVSHbuzUDShMJX1pi5c-FpgiqvO9MzK7pwzzphvV38JfgLpB5yp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1367540175</pqid></control><display><type>article</type><title>Three-Dimensional Stabilized Finite Elements for Compressible Navier–Stokes</title><source>Alma/SFX Local Collection</source><creator>Erwin, J. Taylor ; Anderson, W. Kyle ; Kapadia, Sagar ; Wang, Li</creator><creatorcontrib>Erwin, J. Taylor ; Anderson, W. Kyle ; Kapadia, Sagar ; Wang, Li</creatorcontrib><description>In this paper, a stabilized finite-element approach is used in the development of a high-order flow solver for compressible flows. The streamline/upwind Petrov–Galerkin discretization is used for the Navier–Stokes equations, and a fully implicit methodology is used for advancing the solution at each time step. The order of accuracy is assessed for both inviscid and viscous flows using the method of manufactured solutions. For two-dimensional flow, a mesh-curving strategy is discussed that allows high-aspect-ratio curved elements in viscous flow regions. In addition, the effects of curved elements are evaluated in two dimensions using the method of manufacture solutions. Finally, test cases are presented in two and three dimensions and compared with well-established results and/or experimental data.</description><identifier>ISSN: 0001-1452</identifier><identifier>EISSN: 1533-385X</identifier><identifier>DOI: 10.2514/1.J051778</identifier><identifier>CODEN: AIAJAH</identifier><language>eng</language><publisher>Reston, VA: American Institute of Aeronautics and Astronautics</publisher><subject>Aerodynamics ; Applied fluid mechanics ; Compressible flow ; Computational methods in fluid dynamics ; Curved ; Exact sciences and technology ; Finite element analysis ; Finite element method ; Fluid dynamics ; Fluid flow ; Fundamental areas of phenomenology (including applications) ; High aspect ratio ; Mathematical analysis ; Mathematical models ; Navier-Stokes equations ; Physics ; Strategy ; Three dimensional ; Two dimensional flow ; Viscous flow</subject><ispartof>AIAA journal, 2013-06, Vol.51 (6), p.1404-1419</ispartof><rights>Copyright © 2013 by J. Taylor Erwin, W. Kyle Anderson, Sagar Kapadia, and Li Wang. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. Copies of this paper may be made for personal or internal use, on condition that the copier pay the $10.00 per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923; include the code and $10.00 in correspondence with the CCC.</rights><rights>2014 INIST-CNRS</rights><rights>Copyright © 2013 by J. Taylor Erwin, W. Kyle Anderson, Sagar Kapadia, and Li Wang. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. Copies of this paper may be made for personal or internal use, on condition that the copier pay the $10.00 per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923; include the code 1533-385X/13 and $10.00 in correspondence with the CCC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a412t-26b896cbf0267ce184a892ba0f1fa3db9ecdb81b3cd711e2f948f65f782214903</citedby><cites>FETCH-LOGICAL-a412t-26b896cbf0267ce184a892ba0f1fa3db9ecdb81b3cd711e2f948f65f782214903</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27374900$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Erwin, J. Taylor</creatorcontrib><creatorcontrib>Anderson, W. Kyle</creatorcontrib><creatorcontrib>Kapadia, Sagar</creatorcontrib><creatorcontrib>Wang, Li</creatorcontrib><title>Three-Dimensional Stabilized Finite Elements for Compressible Navier–Stokes</title><title>AIAA journal</title><description>In this paper, a stabilized finite-element approach is used in the development of a high-order flow solver for compressible flows. The streamline/upwind Petrov–Galerkin discretization is used for the Navier–Stokes equations, and a fully implicit methodology is used for advancing the solution at each time step. The order of accuracy is assessed for both inviscid and viscous flows using the method of manufactured solutions. For two-dimensional flow, a mesh-curving strategy is discussed that allows high-aspect-ratio curved elements in viscous flow regions. In addition, the effects of curved elements are evaluated in two dimensions using the method of manufacture solutions. Finally, test cases are presented in two and three dimensions and compared with well-established results and/or experimental data.</description><subject>Aerodynamics</subject><subject>Applied fluid mechanics</subject><subject>Compressible flow</subject><subject>Computational methods in fluid dynamics</subject><subject>Curved</subject><subject>Exact sciences and technology</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>High aspect ratio</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Navier-Stokes equations</subject><subject>Physics</subject><subject>Strategy</subject><subject>Three dimensional</subject><subject>Two dimensional flow</subject><subject>Viscous flow</subject><issn>0001-1452</issn><issn>1533-385X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqNkctKxEAQRRtRcHws_IOAKLqIdvUj3VnKOOMDH4tRcBc6STW2ZpKxOyPoyn_wD_0SM8wgoiCuiqJO3eLWJWQL6AGTIA7h4JxKUEovkR5IzmOu5d0y6VFKIQYh2SpZC-Gh65jS0COXN_ceMT52Y6yDa2pTRaPW5K5yr1hGQ1e7FqNBhd24DZFtfNRvxhOPIbi8wujKPDv0H2_vo7Z5xLBBVqypAm4u6jq5HQ5u-qfxxfXJWf_oIjYCWBuzJNdpUuSWskQVCFoYnbLcUAvW8DJPsShzDTkvSgWAzKZC20RapRkDkVK-TvbmuhPfPE0xtNnYhQKrytTYTEMGApRWmtN_okmaKtah2z_Qh2bqu5eEjIkUuABJ-V8U8ERJQUHJjtqfU4VvQvBos4l3Y-NfMqDZLKkMskVSHbuzUDShMJX1pi5c-FpgiqvO9MzK7pwzzphvV38JfgLpB5yp</recordid><startdate>20130601</startdate><enddate>20130601</enddate><creator>Erwin, J. Taylor</creator><creator>Anderson, W. Kyle</creator><creator>Kapadia, Sagar</creator><creator>Wang, Li</creator><general>American Institute of Aeronautics and Astronautics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20130601</creationdate><title>Three-Dimensional Stabilized Finite Elements for Compressible Navier–Stokes</title><author>Erwin, J. Taylor ; Anderson, W. Kyle ; Kapadia, Sagar ; Wang, Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a412t-26b896cbf0267ce184a892ba0f1fa3db9ecdb81b3cd711e2f948f65f782214903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Aerodynamics</topic><topic>Applied fluid mechanics</topic><topic>Compressible flow</topic><topic>Computational methods in fluid dynamics</topic><topic>Curved</topic><topic>Exact sciences and technology</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>High aspect ratio</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Navier-Stokes equations</topic><topic>Physics</topic><topic>Strategy</topic><topic>Three dimensional</topic><topic>Two dimensional flow</topic><topic>Viscous flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Erwin, J. Taylor</creatorcontrib><creatorcontrib>Anderson, W. Kyle</creatorcontrib><creatorcontrib>Kapadia, Sagar</creatorcontrib><creatorcontrib>Wang, Li</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>AIAA journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Erwin, J. Taylor</au><au>Anderson, W. Kyle</au><au>Kapadia, Sagar</au><au>Wang, Li</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three-Dimensional Stabilized Finite Elements for Compressible Navier–Stokes</atitle><jtitle>AIAA journal</jtitle><date>2013-06-01</date><risdate>2013</risdate><volume>51</volume><issue>6</issue><spage>1404</spage><epage>1419</epage><pages>1404-1419</pages><issn>0001-1452</issn><eissn>1533-385X</eissn><coden>AIAJAH</coden><abstract>In this paper, a stabilized finite-element approach is used in the development of a high-order flow solver for compressible flows. The streamline/upwind Petrov–Galerkin discretization is used for the Navier–Stokes equations, and a fully implicit methodology is used for advancing the solution at each time step. The order of accuracy is assessed for both inviscid and viscous flows using the method of manufactured solutions. For two-dimensional flow, a mesh-curving strategy is discussed that allows high-aspect-ratio curved elements in viscous flow regions. In addition, the effects of curved elements are evaluated in two dimensions using the method of manufacture solutions. Finally, test cases are presented in two and three dimensions and compared with well-established results and/or experimental data.</abstract><cop>Reston, VA</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/1.J051778</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-1452
ispartof AIAA journal, 2013-06, Vol.51 (6), p.1404-1419
issn 0001-1452
1533-385X
language eng
recordid cdi_crossref_primary_10_2514_1_J051778
source Alma/SFX Local Collection
subjects Aerodynamics
Applied fluid mechanics
Compressible flow
Computational methods in fluid dynamics
Curved
Exact sciences and technology
Finite element analysis
Finite element method
Fluid dynamics
Fluid flow
Fundamental areas of phenomenology (including applications)
High aspect ratio
Mathematical analysis
Mathematical models
Navier-Stokes equations
Physics
Strategy
Three dimensional
Two dimensional flow
Viscous flow
title Three-Dimensional Stabilized Finite Elements for Compressible Navier–Stokes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T14%3A29%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three-Dimensional%20Stabilized%20Finite%20Elements%20for%20Compressible%20Navier%E2%80%93Stokes&rft.jtitle=AIAA%20journal&rft.au=Erwin,%20J.%20Taylor&rft.date=2013-06-01&rft.volume=51&rft.issue=6&rft.spage=1404&rft.epage=1419&rft.pages=1404-1419&rft.issn=0001-1452&rft.eissn=1533-385X&rft.coden=AIAJAH&rft_id=info:doi/10.2514/1.J051778&rft_dat=%3Cproquest_cross%3E2491341503%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1367540175&rft_id=info:pmid/&rfr_iscdi=true