Three-Dimensional Stabilized Finite Elements for Compressible Navier–Stokes
In this paper, a stabilized finite-element approach is used in the development of a high-order flow solver for compressible flows. The streamline/upwind Petrov–Galerkin discretization is used for the Navier–Stokes equations, and a fully implicit methodology is used for advancing the solution at each...
Gespeichert in:
Veröffentlicht in: | AIAA journal 2013-06, Vol.51 (6), p.1404-1419 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1419 |
---|---|
container_issue | 6 |
container_start_page | 1404 |
container_title | AIAA journal |
container_volume | 51 |
creator | Erwin, J. Taylor Anderson, W. Kyle Kapadia, Sagar Wang, Li |
description | In this paper, a stabilized finite-element approach is used in the development of a high-order flow solver for compressible flows. The streamline/upwind Petrov–Galerkin discretization is used for the Navier–Stokes equations, and a fully implicit methodology is used for advancing the solution at each time step. The order of accuracy is assessed for both inviscid and viscous flows using the method of manufactured solutions. For two-dimensional flow, a mesh-curving strategy is discussed that allows high-aspect-ratio curved elements in viscous flow regions. In addition, the effects of curved elements are evaluated in two dimensions using the method of manufacture solutions. Finally, test cases are presented in two and three dimensions and compared with well-established results and/or experimental data. |
doi_str_mv | 10.2514/1.J051778 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_2514_1_J051778</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2491341503</sourcerecordid><originalsourceid>FETCH-LOGICAL-a412t-26b896cbf0267ce184a892ba0f1fa3db9ecdb81b3cd711e2f948f65f782214903</originalsourceid><addsrcrecordid>eNqNkctKxEAQRRtRcHws_IOAKLqIdvUj3VnKOOMDH4tRcBc6STW2ZpKxOyPoyn_wD_0SM8wgoiCuiqJO3eLWJWQL6AGTIA7h4JxKUEovkR5IzmOu5d0y6VFKIQYh2SpZC-Gh65jS0COXN_ceMT52Y6yDa2pTRaPW5K5yr1hGQ1e7FqNBhd24DZFtfNRvxhOPIbi8wujKPDv0H2_vo7Z5xLBBVqypAm4u6jq5HQ5u-qfxxfXJWf_oIjYCWBuzJNdpUuSWskQVCFoYnbLcUAvW8DJPsShzDTkvSgWAzKZC20RapRkDkVK-TvbmuhPfPE0xtNnYhQKrytTYTEMGApRWmtN_okmaKtah2z_Qh2bqu5eEjIkUuABJ-V8U8ERJQUHJjtqfU4VvQvBos4l3Y-NfMqDZLKkMskVSHbuzUDShMJX1pi5c-FpgiqvO9MzK7pwzzphvV38JfgLpB5yp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1367540175</pqid></control><display><type>article</type><title>Three-Dimensional Stabilized Finite Elements for Compressible Navier–Stokes</title><source>Alma/SFX Local Collection</source><creator>Erwin, J. Taylor ; Anderson, W. Kyle ; Kapadia, Sagar ; Wang, Li</creator><creatorcontrib>Erwin, J. Taylor ; Anderson, W. Kyle ; Kapadia, Sagar ; Wang, Li</creatorcontrib><description>In this paper, a stabilized finite-element approach is used in the development of a high-order flow solver for compressible flows. The streamline/upwind Petrov–Galerkin discretization is used for the Navier–Stokes equations, and a fully implicit methodology is used for advancing the solution at each time step. The order of accuracy is assessed for both inviscid and viscous flows using the method of manufactured solutions. For two-dimensional flow, a mesh-curving strategy is discussed that allows high-aspect-ratio curved elements in viscous flow regions. In addition, the effects of curved elements are evaluated in two dimensions using the method of manufacture solutions. Finally, test cases are presented in two and three dimensions and compared with well-established results and/or experimental data.</description><identifier>ISSN: 0001-1452</identifier><identifier>EISSN: 1533-385X</identifier><identifier>DOI: 10.2514/1.J051778</identifier><identifier>CODEN: AIAJAH</identifier><language>eng</language><publisher>Reston, VA: American Institute of Aeronautics and Astronautics</publisher><subject>Aerodynamics ; Applied fluid mechanics ; Compressible flow ; Computational methods in fluid dynamics ; Curved ; Exact sciences and technology ; Finite element analysis ; Finite element method ; Fluid dynamics ; Fluid flow ; Fundamental areas of phenomenology (including applications) ; High aspect ratio ; Mathematical analysis ; Mathematical models ; Navier-Stokes equations ; Physics ; Strategy ; Three dimensional ; Two dimensional flow ; Viscous flow</subject><ispartof>AIAA journal, 2013-06, Vol.51 (6), p.1404-1419</ispartof><rights>Copyright © 2013 by J. Taylor Erwin, W. Kyle Anderson, Sagar Kapadia, and Li Wang. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. Copies of this paper may be made for personal or internal use, on condition that the copier pay the $10.00 per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923; include the code and $10.00 in correspondence with the CCC.</rights><rights>2014 INIST-CNRS</rights><rights>Copyright © 2013 by J. Taylor Erwin, W. Kyle Anderson, Sagar Kapadia, and Li Wang. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. Copies of this paper may be made for personal or internal use, on condition that the copier pay the $10.00 per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923; include the code 1533-385X/13 and $10.00 in correspondence with the CCC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a412t-26b896cbf0267ce184a892ba0f1fa3db9ecdb81b3cd711e2f948f65f782214903</citedby><cites>FETCH-LOGICAL-a412t-26b896cbf0267ce184a892ba0f1fa3db9ecdb81b3cd711e2f948f65f782214903</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27374900$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Erwin, J. Taylor</creatorcontrib><creatorcontrib>Anderson, W. Kyle</creatorcontrib><creatorcontrib>Kapadia, Sagar</creatorcontrib><creatorcontrib>Wang, Li</creatorcontrib><title>Three-Dimensional Stabilized Finite Elements for Compressible Navier–Stokes</title><title>AIAA journal</title><description>In this paper, a stabilized finite-element approach is used in the development of a high-order flow solver for compressible flows. The streamline/upwind Petrov–Galerkin discretization is used for the Navier–Stokes equations, and a fully implicit methodology is used for advancing the solution at each time step. The order of accuracy is assessed for both inviscid and viscous flows using the method of manufactured solutions. For two-dimensional flow, a mesh-curving strategy is discussed that allows high-aspect-ratio curved elements in viscous flow regions. In addition, the effects of curved elements are evaluated in two dimensions using the method of manufacture solutions. Finally, test cases are presented in two and three dimensions and compared with well-established results and/or experimental data.</description><subject>Aerodynamics</subject><subject>Applied fluid mechanics</subject><subject>Compressible flow</subject><subject>Computational methods in fluid dynamics</subject><subject>Curved</subject><subject>Exact sciences and technology</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>High aspect ratio</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Navier-Stokes equations</subject><subject>Physics</subject><subject>Strategy</subject><subject>Three dimensional</subject><subject>Two dimensional flow</subject><subject>Viscous flow</subject><issn>0001-1452</issn><issn>1533-385X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqNkctKxEAQRRtRcHws_IOAKLqIdvUj3VnKOOMDH4tRcBc6STW2ZpKxOyPoyn_wD_0SM8wgoiCuiqJO3eLWJWQL6AGTIA7h4JxKUEovkR5IzmOu5d0y6VFKIQYh2SpZC-Gh65jS0COXN_ceMT52Y6yDa2pTRaPW5K5yr1hGQ1e7FqNBhd24DZFtfNRvxhOPIbi8wujKPDv0H2_vo7Z5xLBBVqypAm4u6jq5HQ5u-qfxxfXJWf_oIjYCWBuzJNdpUuSWskQVCFoYnbLcUAvW8DJPsShzDTkvSgWAzKZC20RapRkDkVK-TvbmuhPfPE0xtNnYhQKrytTYTEMGApRWmtN_okmaKtah2z_Qh2bqu5eEjIkUuABJ-V8U8ERJQUHJjtqfU4VvQvBos4l3Y-NfMqDZLKkMskVSHbuzUDShMJX1pi5c-FpgiqvO9MzK7pwzzphvV38JfgLpB5yp</recordid><startdate>20130601</startdate><enddate>20130601</enddate><creator>Erwin, J. Taylor</creator><creator>Anderson, W. Kyle</creator><creator>Kapadia, Sagar</creator><creator>Wang, Li</creator><general>American Institute of Aeronautics and Astronautics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20130601</creationdate><title>Three-Dimensional Stabilized Finite Elements for Compressible Navier–Stokes</title><author>Erwin, J. Taylor ; Anderson, W. Kyle ; Kapadia, Sagar ; Wang, Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a412t-26b896cbf0267ce184a892ba0f1fa3db9ecdb81b3cd711e2f948f65f782214903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Aerodynamics</topic><topic>Applied fluid mechanics</topic><topic>Compressible flow</topic><topic>Computational methods in fluid dynamics</topic><topic>Curved</topic><topic>Exact sciences and technology</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>High aspect ratio</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Navier-Stokes equations</topic><topic>Physics</topic><topic>Strategy</topic><topic>Three dimensional</topic><topic>Two dimensional flow</topic><topic>Viscous flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Erwin, J. Taylor</creatorcontrib><creatorcontrib>Anderson, W. Kyle</creatorcontrib><creatorcontrib>Kapadia, Sagar</creatorcontrib><creatorcontrib>Wang, Li</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>AIAA journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Erwin, J. Taylor</au><au>Anderson, W. Kyle</au><au>Kapadia, Sagar</au><au>Wang, Li</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three-Dimensional Stabilized Finite Elements for Compressible Navier–Stokes</atitle><jtitle>AIAA journal</jtitle><date>2013-06-01</date><risdate>2013</risdate><volume>51</volume><issue>6</issue><spage>1404</spage><epage>1419</epage><pages>1404-1419</pages><issn>0001-1452</issn><eissn>1533-385X</eissn><coden>AIAJAH</coden><abstract>In this paper, a stabilized finite-element approach is used in the development of a high-order flow solver for compressible flows. The streamline/upwind Petrov–Galerkin discretization is used for the Navier–Stokes equations, and a fully implicit methodology is used for advancing the solution at each time step. The order of accuracy is assessed for both inviscid and viscous flows using the method of manufactured solutions. For two-dimensional flow, a mesh-curving strategy is discussed that allows high-aspect-ratio curved elements in viscous flow regions. In addition, the effects of curved elements are evaluated in two dimensions using the method of manufacture solutions. Finally, test cases are presented in two and three dimensions and compared with well-established results and/or experimental data.</abstract><cop>Reston, VA</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/1.J051778</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-1452 |
ispartof | AIAA journal, 2013-06, Vol.51 (6), p.1404-1419 |
issn | 0001-1452 1533-385X |
language | eng |
recordid | cdi_crossref_primary_10_2514_1_J051778 |
source | Alma/SFX Local Collection |
subjects | Aerodynamics Applied fluid mechanics Compressible flow Computational methods in fluid dynamics Curved Exact sciences and technology Finite element analysis Finite element method Fluid dynamics Fluid flow Fundamental areas of phenomenology (including applications) High aspect ratio Mathematical analysis Mathematical models Navier-Stokes equations Physics Strategy Three dimensional Two dimensional flow Viscous flow |
title | Three-Dimensional Stabilized Finite Elements for Compressible Navier–Stokes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T14%3A29%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three-Dimensional%20Stabilized%20Finite%20Elements%20for%20Compressible%20Navier%E2%80%93Stokes&rft.jtitle=AIAA%20journal&rft.au=Erwin,%20J.%20Taylor&rft.date=2013-06-01&rft.volume=51&rft.issue=6&rft.spage=1404&rft.epage=1419&rft.pages=1404-1419&rft.issn=0001-1452&rft.eissn=1533-385X&rft.coden=AIAJAH&rft_id=info:doi/10.2514/1.J051778&rft_dat=%3Cproquest_cross%3E2491341503%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1367540175&rft_id=info:pmid/&rfr_iscdi=true |