Active Vibration Damping Using Rotor Torque Control in Electric Aircraft

Vibration damping in aerospace structures can decrease the likelihood of failures and instabilities and improve passenger comfort. This paper introduces the novel idea of damping vibration using the electric proprotors on aircraft without compromising flight control. The equations of motion of a can...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of guidance, control, and dynamics control, and dynamics, 2024-08, Vol.47 (8), p.1634-1644
Hauptverfasser: Cho, Changik, Rahn, Christopher D., Smith, Edward, Cusumano, Joseph P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1644
container_issue 8
container_start_page 1634
container_title Journal of guidance, control, and dynamics
container_volume 47
creator Cho, Changik
Rahn, Christopher D.
Smith, Edward
Cusumano, Joseph P.
description Vibration damping in aerospace structures can decrease the likelihood of failures and instabilities and improve passenger comfort. This paper introduces the novel idea of damping vibration using the electric proprotors on aircraft without compromising flight control. The equations of motion of a cantilevered beam with a propeller at the tip driven by an electric motor are obtained using Hamilton’s principle, solved analytically in the frequency domain, and approximately in the time domain. Feeding back the beam tip angular rate to the motor torque is shown to asymptotically stabilize all transverse beam vibration modes. The overall vibration control consists of the inner rate feedback damping loop with an outer rotor speed control loop. Experimental frequency response and step response validate the models and show that the closed-loop damping in the first mode is three times higher than open loop with less than 1% rotor speed change for a 3% initial tip displacement. Theoretical results give good agreement with experiments. Parametric studies based on a 12 kg quadcopter indicate that if the rotor inertia is sufficiently large the proposed control can provide 8% damping with minimal impact on rotor speed.
doi_str_mv 10.2514/1.G007631
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_2514_1_G007631</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3083693060</sourcerecordid><originalsourceid>FETCH-LOGICAL-a178t-cadea3e249be318fde23bd0ce5492dd392fb510788ad60f3c988f10662debabe3</originalsourceid><addsrcrecordid>eNplkEtLAzEUhYMoWKsL_0FAEFxMvXcyj8yy1NoKBUFatyGTh6S0k5qkgv--U1pw4eaezXfOuRxC7hFGeYnFM45mAHXF8IIMsGQsY5wXl2QANcOshAauyU2MawBkFdYDMh-r5H4M_XRtkMn5jr7I7c51X3QVj_fDJx_o0ofvvaET36XgN9R1dLoxKgWn6NgFFaRNt-TKyk00d2cdktXrdDmZZ4v32dtkvMgk1jxlSmojmcmLpjUMudUmZ60GZcqiybVmTW7bEqHmXOoKLFMN5xahqnJtWtl7huThlLsLvv8pJrH2-9D1lYIBZ1XDoIKeejpRKvgYg7FiF9xWhl-BII5DCRTnoXr28cRKJ-Vf2n_wABUaZgY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3083693060</pqid></control><display><type>article</type><title>Active Vibration Damping Using Rotor Torque Control in Electric Aircraft</title><source>Alma/SFX Local Collection</source><creator>Cho, Changik ; Rahn, Christopher D. ; Smith, Edward ; Cusumano, Joseph P.</creator><creatorcontrib>Cho, Changik ; Rahn, Christopher D. ; Smith, Edward ; Cusumano, Joseph P.</creatorcontrib><description>Vibration damping in aerospace structures can decrease the likelihood of failures and instabilities and improve passenger comfort. This paper introduces the novel idea of damping vibration using the electric proprotors on aircraft without compromising flight control. The equations of motion of a cantilevered beam with a propeller at the tip driven by an electric motor are obtained using Hamilton’s principle, solved analytically in the frequency domain, and approximately in the time domain. Feeding back the beam tip angular rate to the motor torque is shown to asymptotically stabilize all transverse beam vibration modes. The overall vibration control consists of the inner rate feedback damping loop with an outer rotor speed control loop. Experimental frequency response and step response validate the models and show that the closed-loop damping in the first mode is three times higher than open loop with less than 1% rotor speed change for a 3% initial tip displacement. Theoretical results give good agreement with experiments. Parametric studies based on a 12 kg quadcopter indicate that if the rotor inertia is sufficiently large the proposed control can provide 8% damping with minimal impact on rotor speed.</description><identifier>ISSN: 0731-5090</identifier><identifier>EISSN: 1533-3884</identifier><identifier>DOI: 10.2514/1.G007631</identifier><language>eng</language><publisher>Reston: American Institute of Aeronautics and Astronautics</publisher><subject>Active control ; Active damping ; Aircraft ; Aircraft control ; Aircraft vibration ; Beams (radiation) ; Cantilever beams ; Closed loops ; Electric motors ; Equations of motion ; Flight control ; Fly by wire control ; Frequency response ; Hamilton's principle ; Passenger comfort ; Rotor speed ; Speed control ; Step response ; Time domain analysis ; Torque ; Vibration control ; Vibration damping ; Vibration mode</subject><ispartof>Journal of guidance, control, and dynamics, 2024-08, Vol.47 (8), p.1634-1644</ispartof><rights>Copyright © 2024 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. All requests for copying and permission to reprint should be submitted to CCC at ; employ the eISSN to initiate your request. See also AIAA Rights and Permissions .</rights><rights>Copyright © 2024 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the eISSN 1533-3884 to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a178t-cadea3e249be318fde23bd0ce5492dd392fb510788ad60f3c988f10662debabe3</cites><orcidid>0000-0002-8057-6418</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Cho, Changik</creatorcontrib><creatorcontrib>Rahn, Christopher D.</creatorcontrib><creatorcontrib>Smith, Edward</creatorcontrib><creatorcontrib>Cusumano, Joseph P.</creatorcontrib><title>Active Vibration Damping Using Rotor Torque Control in Electric Aircraft</title><title>Journal of guidance, control, and dynamics</title><description>Vibration damping in aerospace structures can decrease the likelihood of failures and instabilities and improve passenger comfort. This paper introduces the novel idea of damping vibration using the electric proprotors on aircraft without compromising flight control. The equations of motion of a cantilevered beam with a propeller at the tip driven by an electric motor are obtained using Hamilton’s principle, solved analytically in the frequency domain, and approximately in the time domain. Feeding back the beam tip angular rate to the motor torque is shown to asymptotically stabilize all transverse beam vibration modes. The overall vibration control consists of the inner rate feedback damping loop with an outer rotor speed control loop. Experimental frequency response and step response validate the models and show that the closed-loop damping in the first mode is three times higher than open loop with less than 1% rotor speed change for a 3% initial tip displacement. Theoretical results give good agreement with experiments. Parametric studies based on a 12 kg quadcopter indicate that if the rotor inertia is sufficiently large the proposed control can provide 8% damping with minimal impact on rotor speed.</description><subject>Active control</subject><subject>Active damping</subject><subject>Aircraft</subject><subject>Aircraft control</subject><subject>Aircraft vibration</subject><subject>Beams (radiation)</subject><subject>Cantilever beams</subject><subject>Closed loops</subject><subject>Electric motors</subject><subject>Equations of motion</subject><subject>Flight control</subject><subject>Fly by wire control</subject><subject>Frequency response</subject><subject>Hamilton's principle</subject><subject>Passenger comfort</subject><subject>Rotor speed</subject><subject>Speed control</subject><subject>Step response</subject><subject>Time domain analysis</subject><subject>Torque</subject><subject>Vibration control</subject><subject>Vibration damping</subject><subject>Vibration mode</subject><issn>0731-5090</issn><issn>1533-3884</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNplkEtLAzEUhYMoWKsL_0FAEFxMvXcyj8yy1NoKBUFatyGTh6S0k5qkgv--U1pw4eaezXfOuRxC7hFGeYnFM45mAHXF8IIMsGQsY5wXl2QANcOshAauyU2MawBkFdYDMh-r5H4M_XRtkMn5jr7I7c51X3QVj_fDJx_o0ofvvaET36XgN9R1dLoxKgWn6NgFFaRNt-TKyk00d2cdktXrdDmZZ4v32dtkvMgk1jxlSmojmcmLpjUMudUmZ60GZcqiybVmTW7bEqHmXOoKLFMN5xahqnJtWtl7huThlLsLvv8pJrH2-9D1lYIBZ1XDoIKeejpRKvgYg7FiF9xWhl-BII5DCRTnoXr28cRKJ-Vf2n_wABUaZgY</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Cho, Changik</creator><creator>Rahn, Christopher D.</creator><creator>Smith, Edward</creator><creator>Cusumano, Joseph P.</creator><general>American Institute of Aeronautics and Astronautics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-8057-6418</orcidid></search><sort><creationdate>20240801</creationdate><title>Active Vibration Damping Using Rotor Torque Control in Electric Aircraft</title><author>Cho, Changik ; Rahn, Christopher D. ; Smith, Edward ; Cusumano, Joseph P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a178t-cadea3e249be318fde23bd0ce5492dd392fb510788ad60f3c988f10662debabe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Active control</topic><topic>Active damping</topic><topic>Aircraft</topic><topic>Aircraft control</topic><topic>Aircraft vibration</topic><topic>Beams (radiation)</topic><topic>Cantilever beams</topic><topic>Closed loops</topic><topic>Electric motors</topic><topic>Equations of motion</topic><topic>Flight control</topic><topic>Fly by wire control</topic><topic>Frequency response</topic><topic>Hamilton's principle</topic><topic>Passenger comfort</topic><topic>Rotor speed</topic><topic>Speed control</topic><topic>Step response</topic><topic>Time domain analysis</topic><topic>Torque</topic><topic>Vibration control</topic><topic>Vibration damping</topic><topic>Vibration mode</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cho, Changik</creatorcontrib><creatorcontrib>Rahn, Christopher D.</creatorcontrib><creatorcontrib>Smith, Edward</creatorcontrib><creatorcontrib>Cusumano, Joseph P.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of guidance, control, and dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cho, Changik</au><au>Rahn, Christopher D.</au><au>Smith, Edward</au><au>Cusumano, Joseph P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Active Vibration Damping Using Rotor Torque Control in Electric Aircraft</atitle><jtitle>Journal of guidance, control, and dynamics</jtitle><date>2024-08-01</date><risdate>2024</risdate><volume>47</volume><issue>8</issue><spage>1634</spage><epage>1644</epage><pages>1634-1644</pages><issn>0731-5090</issn><eissn>1533-3884</eissn><abstract>Vibration damping in aerospace structures can decrease the likelihood of failures and instabilities and improve passenger comfort. This paper introduces the novel idea of damping vibration using the electric proprotors on aircraft without compromising flight control. The equations of motion of a cantilevered beam with a propeller at the tip driven by an electric motor are obtained using Hamilton’s principle, solved analytically in the frequency domain, and approximately in the time domain. Feeding back the beam tip angular rate to the motor torque is shown to asymptotically stabilize all transverse beam vibration modes. The overall vibration control consists of the inner rate feedback damping loop with an outer rotor speed control loop. Experimental frequency response and step response validate the models and show that the closed-loop damping in the first mode is three times higher than open loop with less than 1% rotor speed change for a 3% initial tip displacement. Theoretical results give good agreement with experiments. Parametric studies based on a 12 kg quadcopter indicate that if the rotor inertia is sufficiently large the proposed control can provide 8% damping with minimal impact on rotor speed.</abstract><cop>Reston</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/1.G007631</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-8057-6418</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0731-5090
ispartof Journal of guidance, control, and dynamics, 2024-08, Vol.47 (8), p.1634-1644
issn 0731-5090
1533-3884
language eng
recordid cdi_crossref_primary_10_2514_1_G007631
source Alma/SFX Local Collection
subjects Active control
Active damping
Aircraft
Aircraft control
Aircraft vibration
Beams (radiation)
Cantilever beams
Closed loops
Electric motors
Equations of motion
Flight control
Fly by wire control
Frequency response
Hamilton's principle
Passenger comfort
Rotor speed
Speed control
Step response
Time domain analysis
Torque
Vibration control
Vibration damping
Vibration mode
title Active Vibration Damping Using Rotor Torque Control in Electric Aircraft
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T04%3A42%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Active%20Vibration%20Damping%20Using%20Rotor%20Torque%20Control%20in%20Electric%20Aircraft&rft.jtitle=Journal%20of%20guidance,%20control,%20and%20dynamics&rft.au=Cho,%20Changik&rft.date=2024-08-01&rft.volume=47&rft.issue=8&rft.spage=1634&rft.epage=1644&rft.pages=1634-1644&rft.issn=0731-5090&rft.eissn=1533-3884&rft_id=info:doi/10.2514/1.G007631&rft_dat=%3Cproquest_cross%3E3083693060%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3083693060&rft_id=info:pmid/&rfr_iscdi=true