Ascent Trajectories of Hypersonic Aircraft: Operability Limits Due to Engine Unstart

A generic waverider-type hypersonic aircraft that undergoes an ascent trajectory has been modeled using a first-principles reduced-order model. Two types of operability limits are added that represent boundaries on the aircraft trajectory map (of vehicle altitude versus Mach number). These boundarie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of aircraft 2015-07, Vol.52 (4), p.1345-1354
Hauptverfasser: Dalle, Derek J, Driscoll, James F, Torrez, Sean M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1354
container_issue 4
container_start_page 1345
container_title Journal of aircraft
container_volume 52
creator Dalle, Derek J
Driscoll, James F
Torrez, Sean M
description A generic waverider-type hypersonic aircraft that undergoes an ascent trajectory has been modeled using a first-principles reduced-order model. Two types of operability limits are added that represent boundaries on the aircraft trajectory map (of vehicle altitude versus Mach number). These boundaries are associated with engine unstart and ram–scram transition. The predicted unstart boundary is to be avoided; the ram–scram transition is a condition through which the aircraft must fly, but it is useful for the control system to know when this transition is approached to account for possible sudden changes in thrust and moments. The model shows that unstart occurs if the aircraft flies too high, too slow, or at too great of an acceleration. The unstart limit can be avoided by selecting a trajectory having sufficiently large dynamic pressure or a low vehicle acceleration. Optimizing these factors avoids an excessive value of the fuel–air ratio that is required for trim. The model also identifies an engine inlet geometry that avoids unstart. To assess the model, the computed results are compared to some available experiments.
doi_str_mv 10.2514/1.C032801
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_2514_1_C032801</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1718939808</sourcerecordid><originalsourceid>FETCH-LOGICAL-a349t-9c329f3120ee6e5bb703c96233ce394685ebfcfc09807c157d3a5f068049cc053</originalsourceid><addsrcrecordid>eNp90UtLAzEQAOAgCtbqwX8QEEQPWyfJbjbxVuqjQqGX9hyyMSsp201Nsof-eyPtQRQ8DQzfDPNA6JrAhFakfCCTGTAqgJygEakYK5jg4hSNACgpBOfyHF3EuAEAAXU9QqtpNLZPeBX0xprkg7MR-xbP9zsbou-dwVMXTNBtesTLnNON61za44XbuhTx02Bx8vi5_3C9xes-Jh3SJTprdRft1TGO0frleTWbF4vl69tsuig0K2UqpGFUtoxQsJbbqmlqYEZyypixTJZcVLZpTWtA5lkNqep3pqsWuIBSGgMVG6O7Q99d8J-DjUltXV6n63Rv_RAVqYmQLFeLTG9-0Y0fQp-nU7SULDvO4T9F6nxCoLzkWd0flAk-xmBbtQtuq8NeEVDfX1BEHb-Q7e3Baqf1j25_4BdcHIKg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1700202646</pqid></control><display><type>article</type><title>Ascent Trajectories of Hypersonic Aircraft: Operability Limits Due to Engine Unstart</title><source>Alma/SFX Local Collection</source><creator>Dalle, Derek J ; Driscoll, James F ; Torrez, Sean M</creator><creatorcontrib>Dalle, Derek J ; Driscoll, James F ; Torrez, Sean M</creatorcontrib><description>A generic waverider-type hypersonic aircraft that undergoes an ascent trajectory has been modeled using a first-principles reduced-order model. Two types of operability limits are added that represent boundaries on the aircraft trajectory map (of vehicle altitude versus Mach number). These boundaries are associated with engine unstart and ram–scram transition. The predicted unstart boundary is to be avoided; the ram–scram transition is a condition through which the aircraft must fly, but it is useful for the control system to know when this transition is approached to account for possible sudden changes in thrust and moments. The model shows that unstart occurs if the aircraft flies too high, too slow, or at too great of an acceleration. The unstart limit can be avoided by selecting a trajectory having sufficiently large dynamic pressure or a low vehicle acceleration. Optimizing these factors avoids an excessive value of the fuel–air ratio that is required for trim. The model also identifies an engine inlet geometry that avoids unstart. To assess the model, the computed results are compared to some available experiments.</description><identifier>ISSN: 0021-8669</identifier><identifier>EISSN: 1533-3868</identifier><identifier>EISSN: 1542-3868</identifier><identifier>DOI: 10.2514/1.C032801</identifier><language>eng</language><publisher>Virginia: American Institute of Aeronautics and Astronautics</publisher><subject>Acceleration ; Aerodynamics ; Aerospace engineering ; Aerospace engines ; Aircraft ; Airplane engines ; Ascent trajectories ; Boundaries ; Dynamic pressure ; Engine inlets ; First principles ; Fuel-air ratio ; Hypersonic aircraft ; Mach number ; Mathematical models ; Reduced order models ; Supersonic combustion ramjet engines ; Trajectories ; Unstart (engines)</subject><ispartof>Journal of aircraft, 2015-07, Vol.52 (4), p.1345-1354</ispartof><rights>Copyright © 2014 by Derek J. Dalle. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. Copies of this paper may be made for personal or internal use, on condition that the copier pay the $10.00 per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923; include the code and $10.00 in correspondence with the CCC.</rights><rights>Copyright © 2014 by Derek J. Dalle. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. Copies of this paper may be made for personal or internal use, on condition that the copier pay the $10.00 per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923; include the code 1533-3868/14 and $10.00 in correspondence with the CCC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a349t-9c329f3120ee6e5bb703c96233ce394685ebfcfc09807c157d3a5f068049cc053</citedby><cites>FETCH-LOGICAL-a349t-9c329f3120ee6e5bb703c96233ce394685ebfcfc09807c157d3a5f068049cc053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Dalle, Derek J</creatorcontrib><creatorcontrib>Driscoll, James F</creatorcontrib><creatorcontrib>Torrez, Sean M</creatorcontrib><title>Ascent Trajectories of Hypersonic Aircraft: Operability Limits Due to Engine Unstart</title><title>Journal of aircraft</title><description>A generic waverider-type hypersonic aircraft that undergoes an ascent trajectory has been modeled using a first-principles reduced-order model. Two types of operability limits are added that represent boundaries on the aircraft trajectory map (of vehicle altitude versus Mach number). These boundaries are associated with engine unstart and ram–scram transition. The predicted unstart boundary is to be avoided; the ram–scram transition is a condition through which the aircraft must fly, but it is useful for the control system to know when this transition is approached to account for possible sudden changes in thrust and moments. The model shows that unstart occurs if the aircraft flies too high, too slow, or at too great of an acceleration. The unstart limit can be avoided by selecting a trajectory having sufficiently large dynamic pressure or a low vehicle acceleration. Optimizing these factors avoids an excessive value of the fuel–air ratio that is required for trim. The model also identifies an engine inlet geometry that avoids unstart. To assess the model, the computed results are compared to some available experiments.</description><subject>Acceleration</subject><subject>Aerodynamics</subject><subject>Aerospace engineering</subject><subject>Aerospace engines</subject><subject>Aircraft</subject><subject>Airplane engines</subject><subject>Ascent trajectories</subject><subject>Boundaries</subject><subject>Dynamic pressure</subject><subject>Engine inlets</subject><subject>First principles</subject><subject>Fuel-air ratio</subject><subject>Hypersonic aircraft</subject><subject>Mach number</subject><subject>Mathematical models</subject><subject>Reduced order models</subject><subject>Supersonic combustion ramjet engines</subject><subject>Trajectories</subject><subject>Unstart (engines)</subject><issn>0021-8669</issn><issn>1533-3868</issn><issn>1542-3868</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp90UtLAzEQAOAgCtbqwX8QEEQPWyfJbjbxVuqjQqGX9hyyMSsp201Nsof-eyPtQRQ8DQzfDPNA6JrAhFakfCCTGTAqgJygEakYK5jg4hSNACgpBOfyHF3EuAEAAXU9QqtpNLZPeBX0xprkg7MR-xbP9zsbou-dwVMXTNBtesTLnNON61za44XbuhTx02Bx8vi5_3C9xes-Jh3SJTprdRft1TGO0frleTWbF4vl69tsuig0K2UqpGFUtoxQsJbbqmlqYEZyypixTJZcVLZpTWtA5lkNqep3pqsWuIBSGgMVG6O7Q99d8J-DjUltXV6n63Rv_RAVqYmQLFeLTG9-0Y0fQp-nU7SULDvO4T9F6nxCoLzkWd0flAk-xmBbtQtuq8NeEVDfX1BEHb-Q7e3Baqf1j25_4BdcHIKg</recordid><startdate>20150701</startdate><enddate>20150701</enddate><creator>Dalle, Derek J</creator><creator>Driscoll, James F</creator><creator>Torrez, Sean M</creator><general>American Institute of Aeronautics and Astronautics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>U9A</scope></search><sort><creationdate>20150701</creationdate><title>Ascent Trajectories of Hypersonic Aircraft: Operability Limits Due to Engine Unstart</title><author>Dalle, Derek J ; Driscoll, James F ; Torrez, Sean M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a349t-9c329f3120ee6e5bb703c96233ce394685ebfcfc09807c157d3a5f068049cc053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Acceleration</topic><topic>Aerodynamics</topic><topic>Aerospace engineering</topic><topic>Aerospace engines</topic><topic>Aircraft</topic><topic>Airplane engines</topic><topic>Ascent trajectories</topic><topic>Boundaries</topic><topic>Dynamic pressure</topic><topic>Engine inlets</topic><topic>First principles</topic><topic>Fuel-air ratio</topic><topic>Hypersonic aircraft</topic><topic>Mach number</topic><topic>Mathematical models</topic><topic>Reduced order models</topic><topic>Supersonic combustion ramjet engines</topic><topic>Trajectories</topic><topic>Unstart (engines)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dalle, Derek J</creatorcontrib><creatorcontrib>Driscoll, James F</creatorcontrib><creatorcontrib>Torrez, Sean M</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of aircraft</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dalle, Derek J</au><au>Driscoll, James F</au><au>Torrez, Sean M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ascent Trajectories of Hypersonic Aircraft: Operability Limits Due to Engine Unstart</atitle><jtitle>Journal of aircraft</jtitle><date>2015-07-01</date><risdate>2015</risdate><volume>52</volume><issue>4</issue><spage>1345</spage><epage>1354</epage><pages>1345-1354</pages><issn>0021-8669</issn><eissn>1533-3868</eissn><eissn>1542-3868</eissn><abstract>A generic waverider-type hypersonic aircraft that undergoes an ascent trajectory has been modeled using a first-principles reduced-order model. Two types of operability limits are added that represent boundaries on the aircraft trajectory map (of vehicle altitude versus Mach number). These boundaries are associated with engine unstart and ram–scram transition. The predicted unstart boundary is to be avoided; the ram–scram transition is a condition through which the aircraft must fly, but it is useful for the control system to know when this transition is approached to account for possible sudden changes in thrust and moments. The model shows that unstart occurs if the aircraft flies too high, too slow, or at too great of an acceleration. The unstart limit can be avoided by selecting a trajectory having sufficiently large dynamic pressure or a low vehicle acceleration. Optimizing these factors avoids an excessive value of the fuel–air ratio that is required for trim. The model also identifies an engine inlet geometry that avoids unstart. To assess the model, the computed results are compared to some available experiments.</abstract><cop>Virginia</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/1.C032801</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-8669
ispartof Journal of aircraft, 2015-07, Vol.52 (4), p.1345-1354
issn 0021-8669
1533-3868
1542-3868
language eng
recordid cdi_crossref_primary_10_2514_1_C032801
source Alma/SFX Local Collection
subjects Acceleration
Aerodynamics
Aerospace engineering
Aerospace engines
Aircraft
Airplane engines
Ascent trajectories
Boundaries
Dynamic pressure
Engine inlets
First principles
Fuel-air ratio
Hypersonic aircraft
Mach number
Mathematical models
Reduced order models
Supersonic combustion ramjet engines
Trajectories
Unstart (engines)
title Ascent Trajectories of Hypersonic Aircraft: Operability Limits Due to Engine Unstart
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T01%3A37%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ascent%20Trajectories%20of%20Hypersonic%20Aircraft:%20Operability%20Limits%20Due%20to%20Engine%20Unstart&rft.jtitle=Journal%20of%20aircraft&rft.au=Dalle,%20Derek%20J&rft.date=2015-07-01&rft.volume=52&rft.issue=4&rft.spage=1345&rft.epage=1354&rft.pages=1345-1354&rft.issn=0021-8669&rft.eissn=1533-3868&rft_id=info:doi/10.2514/1.C032801&rft_dat=%3Cproquest_cross%3E1718939808%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1700202646&rft_id=info:pmid/&rfr_iscdi=true