Effects of Sloshing on Flutter Prediction of Liquid-Filled Circular Cylindrical Shell

Dynamic stability of a liquid-filled circular cylindrical shell subjected to supersonic flow and influenced by a moving inside fluid-free surface is investigated simultaneously. Structural modeling is based on the combination of Sanders thin shell theory and the standard finite element method. The s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of aircraft 2011-11, Vol.48 (6), p.1829-1839
Hauptverfasser: Sabri, Farhad, Lakis, Aouni A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1839
container_issue 6
container_start_page 1829
container_title Journal of aircraft
container_volume 48
creator Sabri, Farhad
Lakis, Aouni A
description Dynamic stability of a liquid-filled circular cylindrical shell subjected to supersonic flow and influenced by a moving inside fluid-free surface is investigated simultaneously. Structural modeling is based on the combination of Sanders thin shell theory and the standard finite element method. The shape functions are found from an exact solution of shell theory that yields fast and precise convergence. A first-order piston theory was applied to derive aerodynamic damping and stiffness matrices coupled with the shell elastic deformation. The fluid inside the shell is modeled as a potential variable at each node of the structure elements, and its motion is expressed in terms of nodal degrees of freedom at the interface of the fluid and shell. The effect of axial loading is also investigated by developing a geometrical stiffness matrix. Results showed that ignoring the fluid sloshing effect leads to overprediction of critical flutter velocities, and the most significant deviations are found for short and wide shells with high values of liquid-filling ratios. This hybrid numerical-analytical software package can be used effectively for aeroelastic analysis and the design of shells of revolution at less computational cost compared with commercial finite element packages. [PUBLICATION ABSTRACT]
doi_str_mv 10.2514/1.C031071
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_2514_1_C031071</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2540325741</sourcerecordid><originalsourceid>FETCH-LOGICAL-a1329-8884a8d5b4aa2e855cd4fe5dccc3ac4bde521b9da0127b12d70a45dae916ba023</originalsourceid><addsrcrecordid>eNpl0MFLwzAUBvAgCs7pwf8geBA8dOalTZsepWwqDBTmzuE1SV1GbLekPey_X2UDD54ePH58H3yE3AObcQHZM8wqlgIr4IJMQKRpkspcXpIJYxwSmeflNbmJccsYk6woJmQ9bxqr-0i7hq58Fzeu_aZdSxd-6Hsb6Gewxuneja9RLN1-cCZZOO-toZULevAYaHXwrjXBafR0tbHe35KrBn20d-c7JevF_Kt6S5Yfr-_VyzJBSHmZSCkzlEbUGSK3UghtssYKo7VOUWe1sYJDXRpkwIsauCkYZsKgLSGvkfF0Sh5OubvQ7Qcbe7XthtCOlaoEEEyWUI7o6YR06GIMtlG74H4wHBQw9TuaAnUebbSPJ4sO8S_sPzwCoS5qKw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>911508919</pqid></control><display><type>article</type><title>Effects of Sloshing on Flutter Prediction of Liquid-Filled Circular Cylindrical Shell</title><source>Alma/SFX Local Collection</source><creator>Sabri, Farhad ; Lakis, Aouni A</creator><creatorcontrib>Sabri, Farhad ; Lakis, Aouni A</creatorcontrib><description>Dynamic stability of a liquid-filled circular cylindrical shell subjected to supersonic flow and influenced by a moving inside fluid-free surface is investigated simultaneously. Structural modeling is based on the combination of Sanders thin shell theory and the standard finite element method. The shape functions are found from an exact solution of shell theory that yields fast and precise convergence. A first-order piston theory was applied to derive aerodynamic damping and stiffness matrices coupled with the shell elastic deformation. The fluid inside the shell is modeled as a potential variable at each node of the structure elements, and its motion is expressed in terms of nodal degrees of freedom at the interface of the fluid and shell. The effect of axial loading is also investigated by developing a geometrical stiffness matrix. Results showed that ignoring the fluid sloshing effect leads to overprediction of critical flutter velocities, and the most significant deviations are found for short and wide shells with high values of liquid-filling ratios. This hybrid numerical-analytical software package can be used effectively for aeroelastic analysis and the design of shells of revolution at less computational cost compared with commercial finite element packages. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 0021-8669</identifier><identifier>EISSN: 1533-3868</identifier><identifier>DOI: 10.2514/1.C031071</identifier><language>eng</language><publisher>Virginia: American Institute of Aeronautics and Astronautics</publisher><subject>Convergence ; Deformation ; Finite element analysis ; Geometry ; Matrix</subject><ispartof>Journal of aircraft, 2011-11, Vol.48 (6), p.1829-1839</ispartof><rights>Copyright American Institute of Aeronautics and Astronautics Dec 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a1329-8884a8d5b4aa2e855cd4fe5dccc3ac4bde521b9da0127b12d70a45dae916ba023</citedby><cites>FETCH-LOGICAL-a1329-8884a8d5b4aa2e855cd4fe5dccc3ac4bde521b9da0127b12d70a45dae916ba023</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Sabri, Farhad</creatorcontrib><creatorcontrib>Lakis, Aouni A</creatorcontrib><title>Effects of Sloshing on Flutter Prediction of Liquid-Filled Circular Cylindrical Shell</title><title>Journal of aircraft</title><description>Dynamic stability of a liquid-filled circular cylindrical shell subjected to supersonic flow and influenced by a moving inside fluid-free surface is investigated simultaneously. Structural modeling is based on the combination of Sanders thin shell theory and the standard finite element method. The shape functions are found from an exact solution of shell theory that yields fast and precise convergence. A first-order piston theory was applied to derive aerodynamic damping and stiffness matrices coupled with the shell elastic deformation. The fluid inside the shell is modeled as a potential variable at each node of the structure elements, and its motion is expressed in terms of nodal degrees of freedom at the interface of the fluid and shell. The effect of axial loading is also investigated by developing a geometrical stiffness matrix. Results showed that ignoring the fluid sloshing effect leads to overprediction of critical flutter velocities, and the most significant deviations are found for short and wide shells with high values of liquid-filling ratios. This hybrid numerical-analytical software package can be used effectively for aeroelastic analysis and the design of shells of revolution at less computational cost compared with commercial finite element packages. [PUBLICATION ABSTRACT]</description><subject>Convergence</subject><subject>Deformation</subject><subject>Finite element analysis</subject><subject>Geometry</subject><subject>Matrix</subject><issn>0021-8669</issn><issn>1533-3868</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNpl0MFLwzAUBvAgCs7pwf8geBA8dOalTZsepWwqDBTmzuE1SV1GbLekPey_X2UDD54ePH58H3yE3AObcQHZM8wqlgIr4IJMQKRpkspcXpIJYxwSmeflNbmJccsYk6woJmQ9bxqr-0i7hq58Fzeu_aZdSxd-6Hsb6Gewxuneja9RLN1-cCZZOO-toZULevAYaHXwrjXBafR0tbHe35KrBn20d-c7JevF_Kt6S5Yfr-_VyzJBSHmZSCkzlEbUGSK3UghtssYKo7VOUWe1sYJDXRpkwIsauCkYZsKgLSGvkfF0Sh5OubvQ7Qcbe7XthtCOlaoEEEyWUI7o6YR06GIMtlG74H4wHBQw9TuaAnUebbSPJ4sO8S_sPzwCoS5qKw</recordid><startdate>201111</startdate><enddate>201111</enddate><creator>Sabri, Farhad</creator><creator>Lakis, Aouni A</creator><general>American Institute of Aeronautics and Astronautics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>U9A</scope></search><sort><creationdate>201111</creationdate><title>Effects of Sloshing on Flutter Prediction of Liquid-Filled Circular Cylindrical Shell</title><author>Sabri, Farhad ; Lakis, Aouni A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a1329-8884a8d5b4aa2e855cd4fe5dccc3ac4bde521b9da0127b12d70a45dae916ba023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Convergence</topic><topic>Deformation</topic><topic>Finite element analysis</topic><topic>Geometry</topic><topic>Matrix</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sabri, Farhad</creatorcontrib><creatorcontrib>Lakis, Aouni A</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of aircraft</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sabri, Farhad</au><au>Lakis, Aouni A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of Sloshing on Flutter Prediction of Liquid-Filled Circular Cylindrical Shell</atitle><jtitle>Journal of aircraft</jtitle><date>2011-11</date><risdate>2011</risdate><volume>48</volume><issue>6</issue><spage>1829</spage><epage>1839</epage><pages>1829-1839</pages><issn>0021-8669</issn><eissn>1533-3868</eissn><abstract>Dynamic stability of a liquid-filled circular cylindrical shell subjected to supersonic flow and influenced by a moving inside fluid-free surface is investigated simultaneously. Structural modeling is based on the combination of Sanders thin shell theory and the standard finite element method. The shape functions are found from an exact solution of shell theory that yields fast and precise convergence. A first-order piston theory was applied to derive aerodynamic damping and stiffness matrices coupled with the shell elastic deformation. The fluid inside the shell is modeled as a potential variable at each node of the structure elements, and its motion is expressed in terms of nodal degrees of freedom at the interface of the fluid and shell. The effect of axial loading is also investigated by developing a geometrical stiffness matrix. Results showed that ignoring the fluid sloshing effect leads to overprediction of critical flutter velocities, and the most significant deviations are found for short and wide shells with high values of liquid-filling ratios. This hybrid numerical-analytical software package can be used effectively for aeroelastic analysis and the design of shells of revolution at less computational cost compared with commercial finite element packages. [PUBLICATION ABSTRACT]</abstract><cop>Virginia</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/1.C031071</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-8669
ispartof Journal of aircraft, 2011-11, Vol.48 (6), p.1829-1839
issn 0021-8669
1533-3868
language eng
recordid cdi_crossref_primary_10_2514_1_C031071
source Alma/SFX Local Collection
subjects Convergence
Deformation
Finite element analysis
Geometry
Matrix
title Effects of Sloshing on Flutter Prediction of Liquid-Filled Circular Cylindrical Shell
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T10%3A20%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20Sloshing%20on%20Flutter%20Prediction%20of%20Liquid-Filled%20Circular%20Cylindrical%20Shell&rft.jtitle=Journal%20of%20aircraft&rft.au=Sabri,%20Farhad&rft.date=2011-11&rft.volume=48&rft.issue=6&rft.spage=1829&rft.epage=1839&rft.pages=1829-1839&rft.issn=0021-8669&rft.eissn=1533-3868&rft_id=info:doi/10.2514/1.C031071&rft_dat=%3Cproquest_cross%3E2540325741%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=911508919&rft_id=info:pmid/&rfr_iscdi=true