Performance Characterization of the Low-Power Halo Electric Propulsion System

Performance measurements have been obtained of a novel propulsion concept called the Halo thruster under development within the University of Surrey. The Halo thruster, a type of cusped-field thruster with close similarity to the cylindrical Hall thruster, is motivated by the need for low-power and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of propulsion and power 2016-11, Vol.32 (6), p.1544-1549
Hauptverfasser: Ryan, C, Wantock, T, Harle, T, Knoll, A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1549
container_issue 6
container_start_page 1544
container_title Journal of propulsion and power
container_volume 32
creator Ryan, C
Wantock, T
Harle, T
Knoll, A
description Performance measurements have been obtained of a novel propulsion concept called the Halo thruster under development within the University of Surrey. The Halo thruster, a type of cusped-field thruster with close similarity to the cylindrical Hall thruster, is motivated by the need for low-power and low-cost electric propulsion for the small satellite sector. Two versions of the device are investigated in this study: a design using permanent magnets at high magnetic-field strength and a design using electromagnets with moderate field strength. While operating at 200 W discharge power, which is of particular interest to power-limited small satellite platforms, the permanent-magnet design achieved a maximum thrust efficiency of 8% at a specific impulse of approximately 900 s using a krypton propellant. By comparison, the electromagnet design achieved a maximum thrust efficiency of 28% at a specific impulse of approximately 1500 s at 200 W using a xenon propellant. For higher levels of power (tested up to 800 W), the performance of the electromagnetic design saturated at approximately 25% thrust efficiency using krypton and 30% using xenon. The thrust efficiency of the permanent-magnet design appeared to increase monotonically up to 600 W reaching a maximum value of 14%.
doi_str_mv 10.2514/1.B36091
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_2514_1_B36091</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2493587376</sourcerecordid><originalsourceid>FETCH-LOGICAL-a389t-bf5c7a6641f11cc85d0104c5e3aeb1a72693fc5d3a4dcbc0803e0652d51f933c3</originalsourceid><addsrcrecordid>eNpl0E1LAzEYBOAgCtYq-BMCInjZmmw-96ilWmHFgnoOb7MJ3bJtapJS6q-3ZQUPnubyMAOD0DUlo1JQfk9Hj0ySip6gARWMFUwreYoGRHFdcCn0ObpIaUkIlVqqAXqduehDXMHaOjxeQASbXWy_IbdhjYPHeeFwHXbFLOxcxFPoAp50zubYWjyLYbPt0lG-71N2q0t05qFL7uo3h-jzafIxnhb12_PL-KEugOkqF3MvrAIpOfWUWqtFQyjhVjgGbk5BlbJi3oqGAW_s3BJNmCNSlI2gvmLMsiG66Xs3MXxtXcpmGbZxfZg0Ja-Y0IopeVB3vbIxpBSdN5vYriDuDSXmeJahpj_rQG97Ci3AX9k_9wOSLGce</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2493587376</pqid></control><display><type>article</type><title>Performance Characterization of the Low-Power Halo Electric Propulsion System</title><source>Alma/SFX Local Collection</source><creator>Ryan, C ; Wantock, T ; Harle, T ; Knoll, A</creator><creatorcontrib>Ryan, C ; Wantock, T ; Harle, T ; Knoll, A</creatorcontrib><description>Performance measurements have been obtained of a novel propulsion concept called the Halo thruster under development within the University of Surrey. The Halo thruster, a type of cusped-field thruster with close similarity to the cylindrical Hall thruster, is motivated by the need for low-power and low-cost electric propulsion for the small satellite sector. Two versions of the device are investigated in this study: a design using permanent magnets at high magnetic-field strength and a design using electromagnets with moderate field strength. While operating at 200 W discharge power, which is of particular interest to power-limited small satellite platforms, the permanent-magnet design achieved a maximum thrust efficiency of 8% at a specific impulse of approximately 900 s using a krypton propellant. By comparison, the electromagnet design achieved a maximum thrust efficiency of 28% at a specific impulse of approximately 1500 s at 200 W using a xenon propellant. For higher levels of power (tested up to 800 W), the performance of the electromagnetic design saturated at approximately 25% thrust efficiency using krypton and 30% using xenon. The thrust efficiency of the permanent-magnet design appeared to increase monotonically up to 600 W reaching a maximum value of 14%.</description><identifier>ISSN: 0748-4658</identifier><identifier>EISSN: 1533-3876</identifier><identifier>DOI: 10.2514/1.B36091</identifier><language>eng</language><publisher>Reston: American Institute of Aeronautics and Astronautics</publisher><subject>Efficiency ; Electric propulsion ; Electromagnets ; Field strength ; Krypton ; Permanent magnets ; Power management ; Propulsion system performance ; Small satellites ; Specific impulse ; Thrust ; Xenon</subject><ispartof>Journal of propulsion and power, 2016-11, Vol.32 (6), p.1544-1549</ispartof><rights>Copyright © 2016 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. Copies of this paper may be made for personal and internal use, on condition that the copier pay the per-copy fee to the Copyright Clearance Center (CCC). All requests for copying and permission to reprint should be submitted to CCC at ; employ the ISSN (print) or (online) to initiate your request.</rights><rights>Copyright © 2016 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. Copies of this paper may be made for personal and internal use, on condition that the copier pay the per-copy fee to the Copyright Clearance Center (CCC). All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the ISSN 0748-4658 (print) or 1533-3876 (online) to initiate your request.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a389t-bf5c7a6641f11cc85d0104c5e3aeb1a72693fc5d3a4dcbc0803e0652d51f933c3</citedby><cites>FETCH-LOGICAL-a389t-bf5c7a6641f11cc85d0104c5e3aeb1a72693fc5d3a4dcbc0803e0652d51f933c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Ryan, C</creatorcontrib><creatorcontrib>Wantock, T</creatorcontrib><creatorcontrib>Harle, T</creatorcontrib><creatorcontrib>Knoll, A</creatorcontrib><title>Performance Characterization of the Low-Power Halo Electric Propulsion System</title><title>Journal of propulsion and power</title><description>Performance measurements have been obtained of a novel propulsion concept called the Halo thruster under development within the University of Surrey. The Halo thruster, a type of cusped-field thruster with close similarity to the cylindrical Hall thruster, is motivated by the need for low-power and low-cost electric propulsion for the small satellite sector. Two versions of the device are investigated in this study: a design using permanent magnets at high magnetic-field strength and a design using electromagnets with moderate field strength. While operating at 200 W discharge power, which is of particular interest to power-limited small satellite platforms, the permanent-magnet design achieved a maximum thrust efficiency of 8% at a specific impulse of approximately 900 s using a krypton propellant. By comparison, the electromagnet design achieved a maximum thrust efficiency of 28% at a specific impulse of approximately 1500 s at 200 W using a xenon propellant. For higher levels of power (tested up to 800 W), the performance of the electromagnetic design saturated at approximately 25% thrust efficiency using krypton and 30% using xenon. The thrust efficiency of the permanent-magnet design appeared to increase monotonically up to 600 W reaching a maximum value of 14%.</description><subject>Efficiency</subject><subject>Electric propulsion</subject><subject>Electromagnets</subject><subject>Field strength</subject><subject>Krypton</subject><subject>Permanent magnets</subject><subject>Power management</subject><subject>Propulsion system performance</subject><subject>Small satellites</subject><subject>Specific impulse</subject><subject>Thrust</subject><subject>Xenon</subject><issn>0748-4658</issn><issn>1533-3876</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNpl0E1LAzEYBOAgCtYq-BMCInjZmmw-96ilWmHFgnoOb7MJ3bJtapJS6q-3ZQUPnubyMAOD0DUlo1JQfk9Hj0ySip6gARWMFUwreYoGRHFdcCn0ObpIaUkIlVqqAXqduehDXMHaOjxeQASbXWy_IbdhjYPHeeFwHXbFLOxcxFPoAp50zubYWjyLYbPt0lG-71N2q0t05qFL7uo3h-jzafIxnhb12_PL-KEugOkqF3MvrAIpOfWUWqtFQyjhVjgGbk5BlbJi3oqGAW_s3BJNmCNSlI2gvmLMsiG66Xs3MXxtXcpmGbZxfZg0Ja-Y0IopeVB3vbIxpBSdN5vYriDuDSXmeJahpj_rQG97Ci3AX9k_9wOSLGce</recordid><startdate>20161101</startdate><enddate>20161101</enddate><creator>Ryan, C</creator><creator>Wantock, T</creator><creator>Harle, T</creator><creator>Knoll, A</creator><general>American Institute of Aeronautics and Astronautics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20161101</creationdate><title>Performance Characterization of the Low-Power Halo Electric Propulsion System</title><author>Ryan, C ; Wantock, T ; Harle, T ; Knoll, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a389t-bf5c7a6641f11cc85d0104c5e3aeb1a72693fc5d3a4dcbc0803e0652d51f933c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Efficiency</topic><topic>Electric propulsion</topic><topic>Electromagnets</topic><topic>Field strength</topic><topic>Krypton</topic><topic>Permanent magnets</topic><topic>Power management</topic><topic>Propulsion system performance</topic><topic>Small satellites</topic><topic>Specific impulse</topic><topic>Thrust</topic><topic>Xenon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ryan, C</creatorcontrib><creatorcontrib>Wantock, T</creatorcontrib><creatorcontrib>Harle, T</creatorcontrib><creatorcontrib>Knoll, A</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of propulsion and power</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ryan, C</au><au>Wantock, T</au><au>Harle, T</au><au>Knoll, A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance Characterization of the Low-Power Halo Electric Propulsion System</atitle><jtitle>Journal of propulsion and power</jtitle><date>2016-11-01</date><risdate>2016</risdate><volume>32</volume><issue>6</issue><spage>1544</spage><epage>1549</epage><pages>1544-1549</pages><issn>0748-4658</issn><eissn>1533-3876</eissn><abstract>Performance measurements have been obtained of a novel propulsion concept called the Halo thruster under development within the University of Surrey. The Halo thruster, a type of cusped-field thruster with close similarity to the cylindrical Hall thruster, is motivated by the need for low-power and low-cost electric propulsion for the small satellite sector. Two versions of the device are investigated in this study: a design using permanent magnets at high magnetic-field strength and a design using electromagnets with moderate field strength. While operating at 200 W discharge power, which is of particular interest to power-limited small satellite platforms, the permanent-magnet design achieved a maximum thrust efficiency of 8% at a specific impulse of approximately 900 s using a krypton propellant. By comparison, the electromagnet design achieved a maximum thrust efficiency of 28% at a specific impulse of approximately 1500 s at 200 W using a xenon propellant. For higher levels of power (tested up to 800 W), the performance of the electromagnetic design saturated at approximately 25% thrust efficiency using krypton and 30% using xenon. The thrust efficiency of the permanent-magnet design appeared to increase monotonically up to 600 W reaching a maximum value of 14%.</abstract><cop>Reston</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/1.B36091</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0748-4658
ispartof Journal of propulsion and power, 2016-11, Vol.32 (6), p.1544-1549
issn 0748-4658
1533-3876
language eng
recordid cdi_crossref_primary_10_2514_1_B36091
source Alma/SFX Local Collection
subjects Efficiency
Electric propulsion
Electromagnets
Field strength
Krypton
Permanent magnets
Power management
Propulsion system performance
Small satellites
Specific impulse
Thrust
Xenon
title Performance Characterization of the Low-Power Halo Electric Propulsion System
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T14%3A21%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20Characterization%20of%20the%20Low-Power%20Halo%20Electric%20Propulsion%20System&rft.jtitle=Journal%20of%20propulsion%20and%20power&rft.au=Ryan,%20C&rft.date=2016-11-01&rft.volume=32&rft.issue=6&rft.spage=1544&rft.epage=1549&rft.pages=1544-1549&rft.issn=0748-4658&rft.eissn=1533-3876&rft_id=info:doi/10.2514/1.B36091&rft_dat=%3Cproquest_cross%3E2493587376%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2493587376&rft_id=info:pmid/&rfr_iscdi=true