Study of Capsule Geometry for Dust Sample Acquisition During Mars Atmospheric Entry

This paper explores an appropriate position for the dust-capturing device on the surface of an aeroflyby capsule traveling at a velocity of 4.4  km/s in the Martian atmosphere at an altitude of 36 km. The equation of motion and the heat-transfer equation for dust particles are solved for particle si...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of spacecraft and rockets 2015-03, Vol.52 (2), p.375-382
Hauptverfasser: Ogino, Yousuke, Terata, Ippei, Nakajima, Keisuke, Ohnishi, Naofumi, Fujita, Kazuhisa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 382
container_issue 2
container_start_page 375
container_title Journal of spacecraft and rockets
container_volume 52
creator Ogino, Yousuke
Terata, Ippei
Nakajima, Keisuke
Ohnishi, Naofumi
Fujita, Kazuhisa
description This paper explores an appropriate position for the dust-capturing device on the surface of an aeroflyby capsule traveling at a velocity of 4.4  km/s in the Martian atmosphere at an altitude of 36 km. The equation of motion and the heat-transfer equation for dust particles are solved for particle sizes of 0.5 and 0.1  μm. A thermochemical nonequilibrium flowfield over the vehicle is computed using a prismatic unstructured mesh method. Analysis indicates that placing a dust-capturing device on the leeward frustum edge results in less aerodynamic drag and lower surface heat flux than placing the same device on the windward frustum edge. The lower heat flux exerted on the surface of the dust-capturing device is preferable because the aerogel on the surface of the device is less damaged. The temperature of dust particles of 0.5  μm diameter is elevated to almost the phase-change temperature when the dust-capturing device is on the leeward frustum edge, due to longer flight time in the high-temperature shock layer. The temperature of dust particles reaching the device on the windward frustum edge is well below the phase-change temperature. However, this study could not find any position to capture dust particles of 0.1  μm diameter before reaching the phase-change temperature, regardless of the position of the dust-capturing device.
doi_str_mv 10.2514/1.A32827
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_2514_1_A32827</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3627858721</sourcerecordid><originalsourceid>FETCH-LOGICAL-a346t-8306a36c46025480372e998d6dbe5552d5f5de9efa68066376f80bf89c71b73f3</originalsourceid><addsrcrecordid>eNp90c1LwzAUAPAgCs4p-CcERPDSmY_mNTmWOacw8TA9h6xNtKNtuqQ97L-3Y4LiwdOD937vAx5C15TMmKDpPZ3lnEmWnaAJFZwnkKn0FE0IYSxJQZBzdBHjlhAKEtQErdf9UO6xd3huujjUFi-tb2wf9tj5gB-G2OO1abqxkBe7oYpVX_l2zIeq_cAvJkSc942P3acNVYEX7dh5ic6cqaO9-o5T9P64eJs_JavX5fM8XyWGp9AnkhMwHIoUCBOpJDxjVilZQrmxQghWCidKq6wzIAkAz8BJsnFSFRndZNzxKbo7zu2C3w029rqpYmHr2rTWD1FTyDIFVHIY6c0fuvVDaMfrNDswUFKK_xQFSDklNJU_a4vgYwzW6S5UjQl7TYk-_EBTffzBSG-P1FTG_Br2130BBlOBgw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1664310148</pqid></control><display><type>article</type><title>Study of Capsule Geometry for Dust Sample Acquisition During Mars Atmospheric Entry</title><source>Alma/SFX Local Collection</source><creator>Ogino, Yousuke ; Terata, Ippei ; Nakajima, Keisuke ; Ohnishi, Naofumi ; Fujita, Kazuhisa</creator><creatorcontrib>Ogino, Yousuke ; Terata, Ippei ; Nakajima, Keisuke ; Ohnishi, Naofumi ; Fujita, Kazuhisa</creatorcontrib><description>This paper explores an appropriate position for the dust-capturing device on the surface of an aeroflyby capsule traveling at a velocity of 4.4  km/s in the Martian atmosphere at an altitude of 36 km. The equation of motion and the heat-transfer equation for dust particles are solved for particle sizes of 0.5 and 0.1  μm. A thermochemical nonequilibrium flowfield over the vehicle is computed using a prismatic unstructured mesh method. Analysis indicates that placing a dust-capturing device on the leeward frustum edge results in less aerodynamic drag and lower surface heat flux than placing the same device on the windward frustum edge. The lower heat flux exerted on the surface of the dust-capturing device is preferable because the aerogel on the surface of the device is less damaged. The temperature of dust particles of 0.5  μm diameter is elevated to almost the phase-change temperature when the dust-capturing device is on the leeward frustum edge, due to longer flight time in the high-temperature shock layer. The temperature of dust particles reaching the device on the windward frustum edge is well below the phase-change temperature. However, this study could not find any position to capture dust particles of 0.1  μm diameter before reaching the phase-change temperature, regardless of the position of the dust-capturing device.</description><identifier>ISSN: 0022-4650</identifier><identifier>EISSN: 1533-6794</identifier><identifier>DOI: 10.2514/1.A32827</identifier><language>eng</language><publisher>Reston: American Institute of Aeronautics and Astronautics</publisher><subject>Aerodynamic drag ; Aerogels ; Atmospheric entry ; Devices ; Dust ; Equations of motion ; Flight time ; Frustums ; Heat ; Heat flux ; Heat transfer ; High temperature ; Mars ; Mars atmosphere ; Mars dust ; Mathematical analysis ; Phase change ; Phase transitions ; Placing ; Space capsules</subject><ispartof>Journal of spacecraft and rockets, 2015-03, Vol.52 (2), p.375-382</ispartof><rights>Copyright © 2014 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. Copies of this paper may be made for personal or internal use, on condition that the copier pay the $10.00 per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923; include the code and $10.00 in correspondence with the CCC.</rights><rights>Copyright © 2014 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. Copies of this paper may be made for personal or internal use, on condition that the copier pay the $10.00 per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923; include the code 1533-6794/14 and $10.00 in correspondence with the CCC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a346t-8306a36c46025480372e998d6dbe5552d5f5de9efa68066376f80bf89c71b73f3</citedby><cites>FETCH-LOGICAL-a346t-8306a36c46025480372e998d6dbe5552d5f5de9efa68066376f80bf89c71b73f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Ogino, Yousuke</creatorcontrib><creatorcontrib>Terata, Ippei</creatorcontrib><creatorcontrib>Nakajima, Keisuke</creatorcontrib><creatorcontrib>Ohnishi, Naofumi</creatorcontrib><creatorcontrib>Fujita, Kazuhisa</creatorcontrib><title>Study of Capsule Geometry for Dust Sample Acquisition During Mars Atmospheric Entry</title><title>Journal of spacecraft and rockets</title><description>This paper explores an appropriate position for the dust-capturing device on the surface of an aeroflyby capsule traveling at a velocity of 4.4  km/s in the Martian atmosphere at an altitude of 36 km. The equation of motion and the heat-transfer equation for dust particles are solved for particle sizes of 0.5 and 0.1  μm. A thermochemical nonequilibrium flowfield over the vehicle is computed using a prismatic unstructured mesh method. Analysis indicates that placing a dust-capturing device on the leeward frustum edge results in less aerodynamic drag and lower surface heat flux than placing the same device on the windward frustum edge. The lower heat flux exerted on the surface of the dust-capturing device is preferable because the aerogel on the surface of the device is less damaged. The temperature of dust particles of 0.5  μm diameter is elevated to almost the phase-change temperature when the dust-capturing device is on the leeward frustum edge, due to longer flight time in the high-temperature shock layer. The temperature of dust particles reaching the device on the windward frustum edge is well below the phase-change temperature. However, this study could not find any position to capture dust particles of 0.1  μm diameter before reaching the phase-change temperature, regardless of the position of the dust-capturing device.</description><subject>Aerodynamic drag</subject><subject>Aerogels</subject><subject>Atmospheric entry</subject><subject>Devices</subject><subject>Dust</subject><subject>Equations of motion</subject><subject>Flight time</subject><subject>Frustums</subject><subject>Heat</subject><subject>Heat flux</subject><subject>Heat transfer</subject><subject>High temperature</subject><subject>Mars</subject><subject>Mars atmosphere</subject><subject>Mars dust</subject><subject>Mathematical analysis</subject><subject>Phase change</subject><subject>Phase transitions</subject><subject>Placing</subject><subject>Space capsules</subject><issn>0022-4650</issn><issn>1533-6794</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp90c1LwzAUAPAgCs4p-CcERPDSmY_mNTmWOacw8TA9h6xNtKNtuqQ97L-3Y4LiwdOD937vAx5C15TMmKDpPZ3lnEmWnaAJFZwnkKn0FE0IYSxJQZBzdBHjlhAKEtQErdf9UO6xd3huujjUFi-tb2wf9tj5gB-G2OO1abqxkBe7oYpVX_l2zIeq_cAvJkSc942P3acNVYEX7dh5ic6cqaO9-o5T9P64eJs_JavX5fM8XyWGp9AnkhMwHIoUCBOpJDxjVilZQrmxQghWCidKq6wzIAkAz8BJsnFSFRndZNzxKbo7zu2C3w029rqpYmHr2rTWD1FTyDIFVHIY6c0fuvVDaMfrNDswUFKK_xQFSDklNJU_a4vgYwzW6S5UjQl7TYk-_EBTffzBSG-P1FTG_Br2130BBlOBgw</recordid><startdate>201503</startdate><enddate>201503</enddate><creator>Ogino, Yousuke</creator><creator>Terata, Ippei</creator><creator>Nakajima, Keisuke</creator><creator>Ohnishi, Naofumi</creator><creator>Fujita, Kazuhisa</creator><general>American Institute of Aeronautics and Astronautics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>201503</creationdate><title>Study of Capsule Geometry for Dust Sample Acquisition During Mars Atmospheric Entry</title><author>Ogino, Yousuke ; Terata, Ippei ; Nakajima, Keisuke ; Ohnishi, Naofumi ; Fujita, Kazuhisa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a346t-8306a36c46025480372e998d6dbe5552d5f5de9efa68066376f80bf89c71b73f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Aerodynamic drag</topic><topic>Aerogels</topic><topic>Atmospheric entry</topic><topic>Devices</topic><topic>Dust</topic><topic>Equations of motion</topic><topic>Flight time</topic><topic>Frustums</topic><topic>Heat</topic><topic>Heat flux</topic><topic>Heat transfer</topic><topic>High temperature</topic><topic>Mars</topic><topic>Mars atmosphere</topic><topic>Mars dust</topic><topic>Mathematical analysis</topic><topic>Phase change</topic><topic>Phase transitions</topic><topic>Placing</topic><topic>Space capsules</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ogino, Yousuke</creatorcontrib><creatorcontrib>Terata, Ippei</creatorcontrib><creatorcontrib>Nakajima, Keisuke</creatorcontrib><creatorcontrib>Ohnishi, Naofumi</creatorcontrib><creatorcontrib>Fujita, Kazuhisa</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of spacecraft and rockets</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ogino, Yousuke</au><au>Terata, Ippei</au><au>Nakajima, Keisuke</au><au>Ohnishi, Naofumi</au><au>Fujita, Kazuhisa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study of Capsule Geometry for Dust Sample Acquisition During Mars Atmospheric Entry</atitle><jtitle>Journal of spacecraft and rockets</jtitle><date>2015-03</date><risdate>2015</risdate><volume>52</volume><issue>2</issue><spage>375</spage><epage>382</epage><pages>375-382</pages><issn>0022-4650</issn><eissn>1533-6794</eissn><abstract>This paper explores an appropriate position for the dust-capturing device on the surface of an aeroflyby capsule traveling at a velocity of 4.4  km/s in the Martian atmosphere at an altitude of 36 km. The equation of motion and the heat-transfer equation for dust particles are solved for particle sizes of 0.5 and 0.1  μm. A thermochemical nonequilibrium flowfield over the vehicle is computed using a prismatic unstructured mesh method. Analysis indicates that placing a dust-capturing device on the leeward frustum edge results in less aerodynamic drag and lower surface heat flux than placing the same device on the windward frustum edge. The lower heat flux exerted on the surface of the dust-capturing device is preferable because the aerogel on the surface of the device is less damaged. The temperature of dust particles of 0.5  μm diameter is elevated to almost the phase-change temperature when the dust-capturing device is on the leeward frustum edge, due to longer flight time in the high-temperature shock layer. The temperature of dust particles reaching the device on the windward frustum edge is well below the phase-change temperature. However, this study could not find any position to capture dust particles of 0.1  μm diameter before reaching the phase-change temperature, regardless of the position of the dust-capturing device.</abstract><cop>Reston</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/1.A32827</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-4650
ispartof Journal of spacecraft and rockets, 2015-03, Vol.52 (2), p.375-382
issn 0022-4650
1533-6794
language eng
recordid cdi_crossref_primary_10_2514_1_A32827
source Alma/SFX Local Collection
subjects Aerodynamic drag
Aerogels
Atmospheric entry
Devices
Dust
Equations of motion
Flight time
Frustums
Heat
Heat flux
Heat transfer
High temperature
Mars
Mars atmosphere
Mars dust
Mathematical analysis
Phase change
Phase transitions
Placing
Space capsules
title Study of Capsule Geometry for Dust Sample Acquisition During Mars Atmospheric Entry
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T07%3A16%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20of%20Capsule%20Geometry%20for%20Dust%20Sample%20Acquisition%20During%20Mars%20Atmospheric%20Entry&rft.jtitle=Journal%20of%20spacecraft%20and%20rockets&rft.au=Ogino,%20Yousuke&rft.date=2015-03&rft.volume=52&rft.issue=2&rft.spage=375&rft.epage=382&rft.pages=375-382&rft.issn=0022-4650&rft.eissn=1533-6794&rft_id=info:doi/10.2514/1.A32827&rft_dat=%3Cproquest_cross%3E3627858721%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1664310148&rft_id=info:pmid/&rfr_iscdi=true