Precise Orbit Determination Using Satellite Radar Ranging
Precise orbit determination can be achieved using only range measurements (no angle measurements) collected from several radars in a regional network. As uncompensated range biases are comparable to Global Positioning System pseudorange errors, 1σ1σ position and velocity errors smaller than 10 m and...
Gespeichert in:
Veröffentlicht in: | Journal of guidance, control, and dynamics control, and dynamics, 2012-07, Vol.35 (4), p.1048-1058 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1058 |
---|---|
container_issue | 4 |
container_start_page | 1048 |
container_title | Journal of guidance, control, and dynamics |
container_volume | 35 |
creator | Hough, Michael E |
description | Precise orbit determination can be achieved using only range measurements (no angle measurements) collected from several radars in a regional network. As uncompensated range biases are comparable to Global Positioning System pseudorange errors, 1σ1σ position and velocity errors smaller than 10 m and 1cm/s1cm/s are possible. Global Positioning System-level accuracies can be achieved rapidly during initial trilateration and maintained for the duration of the satellite pass (e.g., 1000 s) because initial velocity errors are small. Missile defense radars can benefit from trilateration because accurate orbit determination and excellent covariance fidelity can be achieved on a very short timeline. Covariance fidelity is improved with a recursive trilateration filter that characterizes the effects of range measurement biases on the estimation process. An important finding is that, for a multiple radar network, trilateration is more accurate than fused triangulation with uncalibrated angle biases. [PUBLICATION ABSTRACT] |
doi_str_mv | 10.2514/1.56873 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_2514_1_56873</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1417869441</sourcerecordid><originalsourceid>FETCH-LOGICAL-a412t-5aed8f46937c9faa61088f343d8a9f7a36f612f8a468cc6d57d45d55cd96d0893</originalsourceid><addsrcrecordid>eNqFkN1qGzEQhUVJoI5T-goLSWh7sa7G-lnpMrhNGjA4pPW1mK6koLDedSQZkrePXJsSTCA3MzB8nDPnEPIZ6GQqgH-HiZCqYR_ICARjNVOKH5ERbRjUgmr6kZyk9EApMAnNiOjb6NqQXLWIf0Oufrjs4ir0mMPQV8sU-vvqN2bXdSG76g4txjL7-3I_Jcceu-Q-7feYLK9-_pn9queL65vZ5bxGDtNcC3RWeS41a1rtESVQpTzjzCrUvkEmvYSpV8ilaltpRWO5sEK0VktLlWZj8nWnu47D48albFYhteUj7N2wSQZkA4wpXRK-i3JolNScQ0HPDtCHYRP7EsQAK69wpvnW-8uOauOQUnTerGNYYXw2QM22bQPmX9uFvNjrYWqx8xH7Uut_fFoy6m3pY_Jtx2FAfOW5kzFr643fdF12T7mw52-yB9YvzzCVWQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1346843949</pqid></control><display><type>article</type><title>Precise Orbit Determination Using Satellite Radar Ranging</title><source>Alma/SFX Local Collection</source><creator>Hough, Michael E</creator><creatorcontrib>Hough, Michael E</creatorcontrib><description>Precise orbit determination can be achieved using only range measurements (no angle measurements) collected from several radars in a regional network. As uncompensated range biases are comparable to Global Positioning System pseudorange errors, 1σ1σ position and velocity errors smaller than 10 m and 1cm/s1cm/s are possible. Global Positioning System-level accuracies can be achieved rapidly during initial trilateration and maintained for the duration of the satellite pass (e.g., 1000 s) because initial velocity errors are small. Missile defense radars can benefit from trilateration because accurate orbit determination and excellent covariance fidelity can be achieved on a very short timeline. Covariance fidelity is improved with a recursive trilateration filter that characterizes the effects of range measurement biases on the estimation process. An important finding is that, for a multiple radar network, trilateration is more accurate than fused triangulation with uncalibrated angle biases. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 0731-5090</identifier><identifier>EISSN: 1533-3884</identifier><identifier>DOI: 10.2514/1.56873</identifier><identifier>CODEN: JGCODS</identifier><language>eng</language><publisher>Reston, VA: American Institute of Aeronautics and Astronautics</publisher><subject>Accuracy ; Astronomy ; Covariance ; Earth, ocean, space ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Fundamental astronomy ; Fundamental astronomy and astrophysics. Instrumentation, techniques, and astronomical observations ; Global positioning systems ; GPS ; Missile defense ; Networks ; Orbit determination ; Orbit determination and improvement ; Physics ; Radar ; Recursive ; Satellites ; Solid dynamics (ballistics, collision, multibody system, stabilization...) ; Solid mechanics ; Velocity ; Velocity errors</subject><ispartof>Journal of guidance, control, and dynamics, 2012-07, Vol.35 (4), p.1048-1058</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright American Institute of Aeronautics and Astronautics Jul-Aug 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a412t-5aed8f46937c9faa61088f343d8a9f7a36f612f8a468cc6d57d45d55cd96d0893</citedby><cites>FETCH-LOGICAL-a412t-5aed8f46937c9faa61088f343d8a9f7a36f612f8a468cc6d57d45d55cd96d0893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26129001$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hough, Michael E</creatorcontrib><title>Precise Orbit Determination Using Satellite Radar Ranging</title><title>Journal of guidance, control, and dynamics</title><description>Precise orbit determination can be achieved using only range measurements (no angle measurements) collected from several radars in a regional network. As uncompensated range biases are comparable to Global Positioning System pseudorange errors, 1σ1σ position and velocity errors smaller than 10 m and 1cm/s1cm/s are possible. Global Positioning System-level accuracies can be achieved rapidly during initial trilateration and maintained for the duration of the satellite pass (e.g., 1000 s) because initial velocity errors are small. Missile defense radars can benefit from trilateration because accurate orbit determination and excellent covariance fidelity can be achieved on a very short timeline. Covariance fidelity is improved with a recursive trilateration filter that characterizes the effects of range measurement biases on the estimation process. An important finding is that, for a multiple radar network, trilateration is more accurate than fused triangulation with uncalibrated angle biases. [PUBLICATION ABSTRACT]</description><subject>Accuracy</subject><subject>Astronomy</subject><subject>Covariance</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Fundamental astronomy</subject><subject>Fundamental astronomy and astrophysics. Instrumentation, techniques, and astronomical observations</subject><subject>Global positioning systems</subject><subject>GPS</subject><subject>Missile defense</subject><subject>Networks</subject><subject>Orbit determination</subject><subject>Orbit determination and improvement</subject><subject>Physics</subject><subject>Radar</subject><subject>Recursive</subject><subject>Satellites</subject><subject>Solid dynamics (ballistics, collision, multibody system, stabilization...)</subject><subject>Solid mechanics</subject><subject>Velocity</subject><subject>Velocity errors</subject><issn>0731-5090</issn><issn>1533-3884</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkN1qGzEQhUVJoI5T-goLSWh7sa7G-lnpMrhNGjA4pPW1mK6koLDedSQZkrePXJsSTCA3MzB8nDPnEPIZ6GQqgH-HiZCqYR_ICARjNVOKH5ERbRjUgmr6kZyk9EApMAnNiOjb6NqQXLWIf0Oufrjs4ir0mMPQV8sU-vvqN2bXdSG76g4txjL7-3I_Jcceu-Q-7feYLK9-_pn9queL65vZ5bxGDtNcC3RWeS41a1rtESVQpTzjzCrUvkEmvYSpV8ilaltpRWO5sEK0VktLlWZj8nWnu47D48albFYhteUj7N2wSQZkA4wpXRK-i3JolNScQ0HPDtCHYRP7EsQAK69wpvnW-8uOauOQUnTerGNYYXw2QM22bQPmX9uFvNjrYWqx8xH7Uut_fFoy6m3pY_Jtx2FAfOW5kzFr643fdF12T7mw52-yB9YvzzCVWQ</recordid><startdate>20120701</startdate><enddate>20120701</enddate><creator>Hough, Michael E</creator><general>American Institute of Aeronautics and Astronautics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20120701</creationdate><title>Precise Orbit Determination Using Satellite Radar Ranging</title><author>Hough, Michael E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a412t-5aed8f46937c9faa61088f343d8a9f7a36f612f8a468cc6d57d45d55cd96d0893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Accuracy</topic><topic>Astronomy</topic><topic>Covariance</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Fundamental astronomy</topic><topic>Fundamental astronomy and astrophysics. Instrumentation, techniques, and astronomical observations</topic><topic>Global positioning systems</topic><topic>GPS</topic><topic>Missile defense</topic><topic>Networks</topic><topic>Orbit determination</topic><topic>Orbit determination and improvement</topic><topic>Physics</topic><topic>Radar</topic><topic>Recursive</topic><topic>Satellites</topic><topic>Solid dynamics (ballistics, collision, multibody system, stabilization...)</topic><topic>Solid mechanics</topic><topic>Velocity</topic><topic>Velocity errors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hough, Michael E</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of guidance, control, and dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hough, Michael E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Precise Orbit Determination Using Satellite Radar Ranging</atitle><jtitle>Journal of guidance, control, and dynamics</jtitle><date>2012-07-01</date><risdate>2012</risdate><volume>35</volume><issue>4</issue><spage>1048</spage><epage>1058</epage><pages>1048-1058</pages><issn>0731-5090</issn><eissn>1533-3884</eissn><coden>JGCODS</coden><abstract>Precise orbit determination can be achieved using only range measurements (no angle measurements) collected from several radars in a regional network. As uncompensated range biases are comparable to Global Positioning System pseudorange errors, 1σ1σ position and velocity errors smaller than 10 m and 1cm/s1cm/s are possible. Global Positioning System-level accuracies can be achieved rapidly during initial trilateration and maintained for the duration of the satellite pass (e.g., 1000 s) because initial velocity errors are small. Missile defense radars can benefit from trilateration because accurate orbit determination and excellent covariance fidelity can be achieved on a very short timeline. Covariance fidelity is improved with a recursive trilateration filter that characterizes the effects of range measurement biases on the estimation process. An important finding is that, for a multiple radar network, trilateration is more accurate than fused triangulation with uncalibrated angle biases. [PUBLICATION ABSTRACT]</abstract><cop>Reston, VA</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/1.56873</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0731-5090 |
ispartof | Journal of guidance, control, and dynamics, 2012-07, Vol.35 (4), p.1048-1058 |
issn | 0731-5090 1533-3884 |
language | eng |
recordid | cdi_crossref_primary_10_2514_1_56873 |
source | Alma/SFX Local Collection |
subjects | Accuracy Astronomy Covariance Earth, ocean, space Exact sciences and technology Fundamental areas of phenomenology (including applications) Fundamental astronomy Fundamental astronomy and astrophysics. Instrumentation, techniques, and astronomical observations Global positioning systems GPS Missile defense Networks Orbit determination Orbit determination and improvement Physics Radar Recursive Satellites Solid dynamics (ballistics, collision, multibody system, stabilization...) Solid mechanics Velocity Velocity errors |
title | Precise Orbit Determination Using Satellite Radar Ranging |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T14%3A44%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Precise%20Orbit%20Determination%20Using%20Satellite%20Radar%20Ranging&rft.jtitle=Journal%20of%20guidance,%20control,%20and%20dynamics&rft.au=Hough,%20Michael%20E&rft.date=2012-07-01&rft.volume=35&rft.issue=4&rft.spage=1048&rft.epage=1058&rft.pages=1048-1058&rft.issn=0731-5090&rft.eissn=1533-3884&rft.coden=JGCODS&rft_id=info:doi/10.2514/1.56873&rft_dat=%3Cproquest_cross%3E1417869441%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1346843949&rft_id=info:pmid/&rfr_iscdi=true |