Precise Orbit Determination Using Satellite Radar Ranging

Precise orbit determination can be achieved using only range measurements (no angle measurements) collected from several radars in a regional network. As uncompensated range biases are comparable to Global Positioning System pseudorange errors, 1σ1σ position and velocity errors smaller than 10 m and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of guidance, control, and dynamics control, and dynamics, 2012-07, Vol.35 (4), p.1048-1058
1. Verfasser: Hough, Michael E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1058
container_issue 4
container_start_page 1048
container_title Journal of guidance, control, and dynamics
container_volume 35
creator Hough, Michael E
description Precise orbit determination can be achieved using only range measurements (no angle measurements) collected from several radars in a regional network. As uncompensated range biases are comparable to Global Positioning System pseudorange errors, 1σ1σ position and velocity errors smaller than 10 m and 1cm/s1cm/s are possible. Global Positioning System-level accuracies can be achieved rapidly during initial trilateration and maintained for the duration of the satellite pass (e.g., 1000 s) because initial velocity errors are small. Missile defense radars can benefit from trilateration because accurate orbit determination and excellent covariance fidelity can be achieved on a very short timeline. Covariance fidelity is improved with a recursive trilateration filter that characterizes the effects of range measurement biases on the estimation process. An important finding is that, for a multiple radar network, trilateration is more accurate than fused triangulation with uncalibrated angle biases. [PUBLICATION ABSTRACT]
doi_str_mv 10.2514/1.56873
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_2514_1_56873</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1417869441</sourcerecordid><originalsourceid>FETCH-LOGICAL-a412t-5aed8f46937c9faa61088f343d8a9f7a36f612f8a468cc6d57d45d55cd96d0893</originalsourceid><addsrcrecordid>eNqFkN1qGzEQhUVJoI5T-goLSWh7sa7G-lnpMrhNGjA4pPW1mK6koLDedSQZkrePXJsSTCA3MzB8nDPnEPIZ6GQqgH-HiZCqYR_ICARjNVOKH5ERbRjUgmr6kZyk9EApMAnNiOjb6NqQXLWIf0Oufrjs4ir0mMPQV8sU-vvqN2bXdSG76g4txjL7-3I_Jcceu-Q-7feYLK9-_pn9queL65vZ5bxGDtNcC3RWeS41a1rtESVQpTzjzCrUvkEmvYSpV8ilaltpRWO5sEK0VktLlWZj8nWnu47D48albFYhteUj7N2wSQZkA4wpXRK-i3JolNScQ0HPDtCHYRP7EsQAK69wpvnW-8uOauOQUnTerGNYYXw2QM22bQPmX9uFvNjrYWqx8xH7Uut_fFoy6m3pY_Jtx2FAfOW5kzFr643fdF12T7mw52-yB9YvzzCVWQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1346843949</pqid></control><display><type>article</type><title>Precise Orbit Determination Using Satellite Radar Ranging</title><source>Alma/SFX Local Collection</source><creator>Hough, Michael E</creator><creatorcontrib>Hough, Michael E</creatorcontrib><description>Precise orbit determination can be achieved using only range measurements (no angle measurements) collected from several radars in a regional network. As uncompensated range biases are comparable to Global Positioning System pseudorange errors, 1σ1σ position and velocity errors smaller than 10 m and 1cm/s1cm/s are possible. Global Positioning System-level accuracies can be achieved rapidly during initial trilateration and maintained for the duration of the satellite pass (e.g., 1000 s) because initial velocity errors are small. Missile defense radars can benefit from trilateration because accurate orbit determination and excellent covariance fidelity can be achieved on a very short timeline. Covariance fidelity is improved with a recursive trilateration filter that characterizes the effects of range measurement biases on the estimation process. An important finding is that, for a multiple radar network, trilateration is more accurate than fused triangulation with uncalibrated angle biases. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 0731-5090</identifier><identifier>EISSN: 1533-3884</identifier><identifier>DOI: 10.2514/1.56873</identifier><identifier>CODEN: JGCODS</identifier><language>eng</language><publisher>Reston, VA: American Institute of Aeronautics and Astronautics</publisher><subject>Accuracy ; Astronomy ; Covariance ; Earth, ocean, space ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Fundamental astronomy ; Fundamental astronomy and astrophysics. Instrumentation, techniques, and astronomical observations ; Global positioning systems ; GPS ; Missile defense ; Networks ; Orbit determination ; Orbit determination and improvement ; Physics ; Radar ; Recursive ; Satellites ; Solid dynamics (ballistics, collision, multibody system, stabilization...) ; Solid mechanics ; Velocity ; Velocity errors</subject><ispartof>Journal of guidance, control, and dynamics, 2012-07, Vol.35 (4), p.1048-1058</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright American Institute of Aeronautics and Astronautics Jul-Aug 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a412t-5aed8f46937c9faa61088f343d8a9f7a36f612f8a468cc6d57d45d55cd96d0893</citedby><cites>FETCH-LOGICAL-a412t-5aed8f46937c9faa61088f343d8a9f7a36f612f8a468cc6d57d45d55cd96d0893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26129001$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hough, Michael E</creatorcontrib><title>Precise Orbit Determination Using Satellite Radar Ranging</title><title>Journal of guidance, control, and dynamics</title><description>Precise orbit determination can be achieved using only range measurements (no angle measurements) collected from several radars in a regional network. As uncompensated range biases are comparable to Global Positioning System pseudorange errors, 1σ1σ position and velocity errors smaller than 10 m and 1cm/s1cm/s are possible. Global Positioning System-level accuracies can be achieved rapidly during initial trilateration and maintained for the duration of the satellite pass (e.g., 1000 s) because initial velocity errors are small. Missile defense radars can benefit from trilateration because accurate orbit determination and excellent covariance fidelity can be achieved on a very short timeline. Covariance fidelity is improved with a recursive trilateration filter that characterizes the effects of range measurement biases on the estimation process. An important finding is that, for a multiple radar network, trilateration is more accurate than fused triangulation with uncalibrated angle biases. [PUBLICATION ABSTRACT]</description><subject>Accuracy</subject><subject>Astronomy</subject><subject>Covariance</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Fundamental astronomy</subject><subject>Fundamental astronomy and astrophysics. Instrumentation, techniques, and astronomical observations</subject><subject>Global positioning systems</subject><subject>GPS</subject><subject>Missile defense</subject><subject>Networks</subject><subject>Orbit determination</subject><subject>Orbit determination and improvement</subject><subject>Physics</subject><subject>Radar</subject><subject>Recursive</subject><subject>Satellites</subject><subject>Solid dynamics (ballistics, collision, multibody system, stabilization...)</subject><subject>Solid mechanics</subject><subject>Velocity</subject><subject>Velocity errors</subject><issn>0731-5090</issn><issn>1533-3884</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkN1qGzEQhUVJoI5T-goLSWh7sa7G-lnpMrhNGjA4pPW1mK6koLDedSQZkrePXJsSTCA3MzB8nDPnEPIZ6GQqgH-HiZCqYR_ICARjNVOKH5ERbRjUgmr6kZyk9EApMAnNiOjb6NqQXLWIf0Oufrjs4ir0mMPQV8sU-vvqN2bXdSG76g4txjL7-3I_Jcceu-Q-7feYLK9-_pn9queL65vZ5bxGDtNcC3RWeS41a1rtESVQpTzjzCrUvkEmvYSpV8ilaltpRWO5sEK0VktLlWZj8nWnu47D48albFYhteUj7N2wSQZkA4wpXRK-i3JolNScQ0HPDtCHYRP7EsQAK69wpvnW-8uOauOQUnTerGNYYXw2QM22bQPmX9uFvNjrYWqx8xH7Uut_fFoy6m3pY_Jtx2FAfOW5kzFr643fdF12T7mw52-yB9YvzzCVWQ</recordid><startdate>20120701</startdate><enddate>20120701</enddate><creator>Hough, Michael E</creator><general>American Institute of Aeronautics and Astronautics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20120701</creationdate><title>Precise Orbit Determination Using Satellite Radar Ranging</title><author>Hough, Michael E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a412t-5aed8f46937c9faa61088f343d8a9f7a36f612f8a468cc6d57d45d55cd96d0893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Accuracy</topic><topic>Astronomy</topic><topic>Covariance</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Fundamental astronomy</topic><topic>Fundamental astronomy and astrophysics. Instrumentation, techniques, and astronomical observations</topic><topic>Global positioning systems</topic><topic>GPS</topic><topic>Missile defense</topic><topic>Networks</topic><topic>Orbit determination</topic><topic>Orbit determination and improvement</topic><topic>Physics</topic><topic>Radar</topic><topic>Recursive</topic><topic>Satellites</topic><topic>Solid dynamics (ballistics, collision, multibody system, stabilization...)</topic><topic>Solid mechanics</topic><topic>Velocity</topic><topic>Velocity errors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hough, Michael E</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of guidance, control, and dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hough, Michael E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Precise Orbit Determination Using Satellite Radar Ranging</atitle><jtitle>Journal of guidance, control, and dynamics</jtitle><date>2012-07-01</date><risdate>2012</risdate><volume>35</volume><issue>4</issue><spage>1048</spage><epage>1058</epage><pages>1048-1058</pages><issn>0731-5090</issn><eissn>1533-3884</eissn><coden>JGCODS</coden><abstract>Precise orbit determination can be achieved using only range measurements (no angle measurements) collected from several radars in a regional network. As uncompensated range biases are comparable to Global Positioning System pseudorange errors, 1σ1σ position and velocity errors smaller than 10 m and 1cm/s1cm/s are possible. Global Positioning System-level accuracies can be achieved rapidly during initial trilateration and maintained for the duration of the satellite pass (e.g., 1000 s) because initial velocity errors are small. Missile defense radars can benefit from trilateration because accurate orbit determination and excellent covariance fidelity can be achieved on a very short timeline. Covariance fidelity is improved with a recursive trilateration filter that characterizes the effects of range measurement biases on the estimation process. An important finding is that, for a multiple radar network, trilateration is more accurate than fused triangulation with uncalibrated angle biases. [PUBLICATION ABSTRACT]</abstract><cop>Reston, VA</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/1.56873</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0731-5090
ispartof Journal of guidance, control, and dynamics, 2012-07, Vol.35 (4), p.1048-1058
issn 0731-5090
1533-3884
language eng
recordid cdi_crossref_primary_10_2514_1_56873
source Alma/SFX Local Collection
subjects Accuracy
Astronomy
Covariance
Earth, ocean, space
Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Fundamental astronomy
Fundamental astronomy and astrophysics. Instrumentation, techniques, and astronomical observations
Global positioning systems
GPS
Missile defense
Networks
Orbit determination
Orbit determination and improvement
Physics
Radar
Recursive
Satellites
Solid dynamics (ballistics, collision, multibody system, stabilization...)
Solid mechanics
Velocity
Velocity errors
title Precise Orbit Determination Using Satellite Radar Ranging
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T14%3A44%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Precise%20Orbit%20Determination%20Using%20Satellite%20Radar%20Ranging&rft.jtitle=Journal%20of%20guidance,%20control,%20and%20dynamics&rft.au=Hough,%20Michael%20E&rft.date=2012-07-01&rft.volume=35&rft.issue=4&rft.spage=1048&rft.epage=1058&rft.pages=1048-1058&rft.issn=0731-5090&rft.eissn=1533-3884&rft.coden=JGCODS&rft_id=info:doi/10.2514/1.56873&rft_dat=%3Cproquest_cross%3E1417869441%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1346843949&rft_id=info:pmid/&rfr_iscdi=true