Aeroelastic Calculations for the Hawk Aircraft Using the Euler Equations
This paper demonstrates coupled time domain computational fluid dynamics (CFD) and computational structural dynamics simulations for flutter analysis of a real aircraft in the transonic regime. It is shown that a major consideration for a certain class of structural models is the transformation meth...
Gespeichert in:
Veröffentlicht in: | Journal of aircraft 2005-07, Vol.42 (4), p.1005-1012 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1012 |
---|---|
container_issue | 4 |
container_start_page | 1005 |
container_title | Journal of aircraft |
container_volume | 42 |
creator | Woodgate, M. A Badcock, K. J Rampurawala, A. M Richards, B. E Nardini, D Henshaw, M. J. deC |
description | This paper demonstrates coupled time domain computational fluid dynamics (CFD) and computational structural dynamics simulations for flutter analysis of a real aircraft in the transonic regime. It is shown that a major consideration for a certain class of structural models is the transformation method, which is used to pass information between the fluid and structural grids. The aircraft used for the calculations is the BAE Systems Hawk. A structural model, which has been developed by BAE Systems for simplified linear flutter calculations, only has a requirement for (unknown symbol)(10) degrees of freedom. There is a significant mismatch between this and the surface grid on which loads and deflections are defined in the CFD calculation. This paper extends the constant volume tetrahedron tranformation, previously demonstrated for wing only aeroelastic calculations, to multicomponent, or full aircraft, cases and demonstrates this for the Hawk. A comparison is made with the predictions of a linear flutter code. [PUBLICATION ABSTRACT] |
doi_str_mv | 10.2514/1.5608 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_2514_1_5608</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>28607949</sourcerecordid><originalsourceid>FETCH-LOGICAL-a372t-aef26c3996bb4d2712188c15125407626d014924ef017d09bafc6f768cee25e73</originalsourceid><addsrcrecordid>eNptkE1LAzEQhoMoWKv-hkVRvGzNx26SPZZSrSB4secwTRNNTXfbJIv6791-QEE9Dcw8PO_wInRJ8ICWpLgng5JjeYR6pGQsZ5LLY9TDmJJccl6dorMYFxhjiYXoocnQhMZ4iMnpbARetx6Sa-qY2SZk6d1kE_j8yIYu6AA2ZdPo6rftftx6E7Lxut3x5-jEgo_mYj_7aPowfh1N8ueXx6fR8DkHJmjKwVjKNasqPpsVcyoIJVJqUhJaFlhwyueYFBUtjMVEzHE1A6u5FVxqY2hpBOuj2513FZp1a2JSSxe18R5q07RRUcmxqIqqA69-gYumDXX3m6KbpLIg7GDToYkxGKtWwS0hfCuC1aZNRdSmzQ682dsgavA2QK1dPNACYyYE7bjrHQcO4JD4x3b3L7W9qtXcKtt6n8xXYj-JtYri</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>207625413</pqid></control><display><type>article</type><title>Aeroelastic Calculations for the Hawk Aircraft Using the Euler Equations</title><source>Alma/SFX Local Collection</source><creator>Woodgate, M. A ; Badcock, K. J ; Rampurawala, A. M ; Richards, B. E ; Nardini, D ; Henshaw, M. J. deC</creator><creatorcontrib>Woodgate, M. A ; Badcock, K. J ; Rampurawala, A. M ; Richards, B. E ; Nardini, D ; Henshaw, M. J. deC</creatorcontrib><description>This paper demonstrates coupled time domain computational fluid dynamics (CFD) and computational structural dynamics simulations for flutter analysis of a real aircraft in the transonic regime. It is shown that a major consideration for a certain class of structural models is the transformation method, which is used to pass information between the fluid and structural grids. The aircraft used for the calculations is the BAE Systems Hawk. A structural model, which has been developed by BAE Systems for simplified linear flutter calculations, only has a requirement for (unknown symbol)(10) degrees of freedom. There is a significant mismatch between this and the surface grid on which loads and deflections are defined in the CFD calculation. This paper extends the constant volume tetrahedron tranformation, previously demonstrated for wing only aeroelastic calculations, to multicomponent, or full aircraft, cases and demonstrates this for the Hawk. A comparison is made with the predictions of a linear flutter code. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 0021-8669</identifier><identifier>EISSN: 1533-3868</identifier><identifier>DOI: 10.2514/1.5608</identifier><identifier>CODEN: JAIRAM</identifier><language>eng</language><publisher>Reston, VA: American Institute of Aeronautics and Astronautics</publisher><subject>Aerodynamics ; Eulers equations ; Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; General theory ; Military aircraft ; Physics ; Solid mechanics ; Structural and continuum mechanics ; Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><ispartof>Journal of aircraft, 2005-07, Vol.42 (4), p.1005-1012</ispartof><rights>2005 INIST-CNRS</rights><rights>Copyright American Institute of Aeronautics and Astronautics Jul/Aug 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a372t-aef26c3996bb4d2712188c15125407626d014924ef017d09bafc6f768cee25e73</citedby><cites>FETCH-LOGICAL-a372t-aef26c3996bb4d2712188c15125407626d014924ef017d09bafc6f768cee25e73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17003772$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Woodgate, M. A</creatorcontrib><creatorcontrib>Badcock, K. J</creatorcontrib><creatorcontrib>Rampurawala, A. M</creatorcontrib><creatorcontrib>Richards, B. E</creatorcontrib><creatorcontrib>Nardini, D</creatorcontrib><creatorcontrib>Henshaw, M. J. deC</creatorcontrib><title>Aeroelastic Calculations for the Hawk Aircraft Using the Euler Equations</title><title>Journal of aircraft</title><description>This paper demonstrates coupled time domain computational fluid dynamics (CFD) and computational structural dynamics simulations for flutter analysis of a real aircraft in the transonic regime. It is shown that a major consideration for a certain class of structural models is the transformation method, which is used to pass information between the fluid and structural grids. The aircraft used for the calculations is the BAE Systems Hawk. A structural model, which has been developed by BAE Systems for simplified linear flutter calculations, only has a requirement for (unknown symbol)(10) degrees of freedom. There is a significant mismatch between this and the surface grid on which loads and deflections are defined in the CFD calculation. This paper extends the constant volume tetrahedron tranformation, previously demonstrated for wing only aeroelastic calculations, to multicomponent, or full aircraft, cases and demonstrates this for the Hawk. A comparison is made with the predictions of a linear flutter code. [PUBLICATION ABSTRACT]</description><subject>Aerodynamics</subject><subject>Eulers equations</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>General theory</subject><subject>Military aircraft</subject><subject>Physics</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><subject>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><issn>0021-8669</issn><issn>1533-3868</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNptkE1LAzEQhoMoWKv-hkVRvGzNx26SPZZSrSB4secwTRNNTXfbJIv6791-QEE9Dcw8PO_wInRJ8ICWpLgng5JjeYR6pGQsZ5LLY9TDmJJccl6dorMYFxhjiYXoocnQhMZ4iMnpbARetx6Sa-qY2SZk6d1kE_j8yIYu6AA2ZdPo6rftftx6E7Lxut3x5-jEgo_mYj_7aPowfh1N8ueXx6fR8DkHJmjKwVjKNasqPpsVcyoIJVJqUhJaFlhwyueYFBUtjMVEzHE1A6u5FVxqY2hpBOuj2513FZp1a2JSSxe18R5q07RRUcmxqIqqA69-gYumDXX3m6KbpLIg7GDToYkxGKtWwS0hfCuC1aZNRdSmzQ682dsgavA2QK1dPNACYyYE7bjrHQcO4JD4x3b3L7W9qtXcKtt6n8xXYj-JtYri</recordid><startdate>20050701</startdate><enddate>20050701</enddate><creator>Woodgate, M. A</creator><creator>Badcock, K. J</creator><creator>Rampurawala, A. M</creator><creator>Richards, B. E</creator><creator>Nardini, D</creator><creator>Henshaw, M. J. deC</creator><general>American Institute of Aeronautics and Astronautics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>U9A</scope><scope>7SC</scope><scope>JQ2</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20050701</creationdate><title>Aeroelastic Calculations for the Hawk Aircraft Using the Euler Equations</title><author>Woodgate, M. A ; Badcock, K. J ; Rampurawala, A. M ; Richards, B. E ; Nardini, D ; Henshaw, M. J. deC</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a372t-aef26c3996bb4d2712188c15125407626d014924ef017d09bafc6f768cee25e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Aerodynamics</topic><topic>Eulers equations</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>General theory</topic><topic>Military aircraft</topic><topic>Physics</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><topic>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Woodgate, M. A</creatorcontrib><creatorcontrib>Badcock, K. J</creatorcontrib><creatorcontrib>Rampurawala, A. M</creatorcontrib><creatorcontrib>Richards, B. E</creatorcontrib><creatorcontrib>Nardini, D</creatorcontrib><creatorcontrib>Henshaw, M. J. deC</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of aircraft</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Woodgate, M. A</au><au>Badcock, K. J</au><au>Rampurawala, A. M</au><au>Richards, B. E</au><au>Nardini, D</au><au>Henshaw, M. J. deC</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Aeroelastic Calculations for the Hawk Aircraft Using the Euler Equations</atitle><jtitle>Journal of aircraft</jtitle><date>2005-07-01</date><risdate>2005</risdate><volume>42</volume><issue>4</issue><spage>1005</spage><epage>1012</epage><pages>1005-1012</pages><issn>0021-8669</issn><eissn>1533-3868</eissn><coden>JAIRAM</coden><abstract>This paper demonstrates coupled time domain computational fluid dynamics (CFD) and computational structural dynamics simulations for flutter analysis of a real aircraft in the transonic regime. It is shown that a major consideration for a certain class of structural models is the transformation method, which is used to pass information between the fluid and structural grids. The aircraft used for the calculations is the BAE Systems Hawk. A structural model, which has been developed by BAE Systems for simplified linear flutter calculations, only has a requirement for (unknown symbol)(10) degrees of freedom. There is a significant mismatch between this and the surface grid on which loads and deflections are defined in the CFD calculation. This paper extends the constant volume tetrahedron tranformation, previously demonstrated for wing only aeroelastic calculations, to multicomponent, or full aircraft, cases and demonstrates this for the Hawk. A comparison is made with the predictions of a linear flutter code. [PUBLICATION ABSTRACT]</abstract><cop>Reston, VA</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/1.5608</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8669 |
ispartof | Journal of aircraft, 2005-07, Vol.42 (4), p.1005-1012 |
issn | 0021-8669 1533-3868 |
language | eng |
recordid | cdi_crossref_primary_10_2514_1_5608 |
source | Alma/SFX Local Collection |
subjects | Aerodynamics Eulers equations Exact sciences and technology Fluid dynamics Fundamental areas of phenomenology (including applications) General theory Military aircraft Physics Solid mechanics Structural and continuum mechanics Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...) |
title | Aeroelastic Calculations for the Hawk Aircraft Using the Euler Equations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T17%3A00%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Aeroelastic%20Calculations%20for%20the%20Hawk%20Aircraft%20Using%20the%20Euler%20Equations&rft.jtitle=Journal%20of%20aircraft&rft.au=Woodgate,%20M.%20A&rft.date=2005-07-01&rft.volume=42&rft.issue=4&rft.spage=1005&rft.epage=1012&rft.pages=1005-1012&rft.issn=0021-8669&rft.eissn=1533-3868&rft.coden=JAIRAM&rft_id=info:doi/10.2514/1.5608&rft_dat=%3Cproquest_cross%3E28607949%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=207625413&rft_id=info:pmid/&rfr_iscdi=true |