Aeroelastic Calculations for the Hawk Aircraft Using the Euler Equations

This paper demonstrates coupled time domain computational fluid dynamics (CFD) and computational structural dynamics simulations for flutter analysis of a real aircraft in the transonic regime. It is shown that a major consideration for a certain class of structural models is the transformation meth...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of aircraft 2005-07, Vol.42 (4), p.1005-1012
Hauptverfasser: Woodgate, M. A, Badcock, K. J, Rampurawala, A. M, Richards, B. E, Nardini, D, Henshaw, M. J. deC
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1012
container_issue 4
container_start_page 1005
container_title Journal of aircraft
container_volume 42
creator Woodgate, M. A
Badcock, K. J
Rampurawala, A. M
Richards, B. E
Nardini, D
Henshaw, M. J. deC
description This paper demonstrates coupled time domain computational fluid dynamics (CFD) and computational structural dynamics simulations for flutter analysis of a real aircraft in the transonic regime. It is shown that a major consideration for a certain class of structural models is the transformation method, which is used to pass information between the fluid and structural grids. The aircraft used for the calculations is the BAE Systems Hawk. A structural model, which has been developed by BAE Systems for simplified linear flutter calculations, only has a requirement for (unknown symbol)(10) degrees of freedom. There is a significant mismatch between this and the surface grid on which loads and deflections are defined in the CFD calculation. This paper extends the constant volume tetrahedron tranformation, previously demonstrated for wing only aeroelastic calculations, to multicomponent, or full aircraft, cases and demonstrates this for the Hawk. A comparison is made with the predictions of a linear flutter code. [PUBLICATION ABSTRACT]
doi_str_mv 10.2514/1.5608
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_2514_1_5608</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>28607949</sourcerecordid><originalsourceid>FETCH-LOGICAL-a372t-aef26c3996bb4d2712188c15125407626d014924ef017d09bafc6f768cee25e73</originalsourceid><addsrcrecordid>eNptkE1LAzEQhoMoWKv-hkVRvGzNx26SPZZSrSB4secwTRNNTXfbJIv6791-QEE9Dcw8PO_wInRJ8ICWpLgng5JjeYR6pGQsZ5LLY9TDmJJccl6dorMYFxhjiYXoocnQhMZ4iMnpbARetx6Sa-qY2SZk6d1kE_j8yIYu6AA2ZdPo6rftftx6E7Lxut3x5-jEgo_mYj_7aPowfh1N8ueXx6fR8DkHJmjKwVjKNasqPpsVcyoIJVJqUhJaFlhwyueYFBUtjMVEzHE1A6u5FVxqY2hpBOuj2513FZp1a2JSSxe18R5q07RRUcmxqIqqA69-gYumDXX3m6KbpLIg7GDToYkxGKtWwS0hfCuC1aZNRdSmzQ682dsgavA2QK1dPNACYyYE7bjrHQcO4JD4x3b3L7W9qtXcKtt6n8xXYj-JtYri</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>207625413</pqid></control><display><type>article</type><title>Aeroelastic Calculations for the Hawk Aircraft Using the Euler Equations</title><source>Alma/SFX Local Collection</source><creator>Woodgate, M. A ; Badcock, K. J ; Rampurawala, A. M ; Richards, B. E ; Nardini, D ; Henshaw, M. J. deC</creator><creatorcontrib>Woodgate, M. A ; Badcock, K. J ; Rampurawala, A. M ; Richards, B. E ; Nardini, D ; Henshaw, M. J. deC</creatorcontrib><description>This paper demonstrates coupled time domain computational fluid dynamics (CFD) and computational structural dynamics simulations for flutter analysis of a real aircraft in the transonic regime. It is shown that a major consideration for a certain class of structural models is the transformation method, which is used to pass information between the fluid and structural grids. The aircraft used for the calculations is the BAE Systems Hawk. A structural model, which has been developed by BAE Systems for simplified linear flutter calculations, only has a requirement for (unknown symbol)(10) degrees of freedom. There is a significant mismatch between this and the surface grid on which loads and deflections are defined in the CFD calculation. This paper extends the constant volume tetrahedron tranformation, previously demonstrated for wing only aeroelastic calculations, to multicomponent, or full aircraft, cases and demonstrates this for the Hawk. A comparison is made with the predictions of a linear flutter code. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 0021-8669</identifier><identifier>EISSN: 1533-3868</identifier><identifier>DOI: 10.2514/1.5608</identifier><identifier>CODEN: JAIRAM</identifier><language>eng</language><publisher>Reston, VA: American Institute of Aeronautics and Astronautics</publisher><subject>Aerodynamics ; Eulers equations ; Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; General theory ; Military aircraft ; Physics ; Solid mechanics ; Structural and continuum mechanics ; Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><ispartof>Journal of aircraft, 2005-07, Vol.42 (4), p.1005-1012</ispartof><rights>2005 INIST-CNRS</rights><rights>Copyright American Institute of Aeronautics and Astronautics Jul/Aug 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a372t-aef26c3996bb4d2712188c15125407626d014924ef017d09bafc6f768cee25e73</citedby><cites>FETCH-LOGICAL-a372t-aef26c3996bb4d2712188c15125407626d014924ef017d09bafc6f768cee25e73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17003772$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Woodgate, M. A</creatorcontrib><creatorcontrib>Badcock, K. J</creatorcontrib><creatorcontrib>Rampurawala, A. M</creatorcontrib><creatorcontrib>Richards, B. E</creatorcontrib><creatorcontrib>Nardini, D</creatorcontrib><creatorcontrib>Henshaw, M. J. deC</creatorcontrib><title>Aeroelastic Calculations for the Hawk Aircraft Using the Euler Equations</title><title>Journal of aircraft</title><description>This paper demonstrates coupled time domain computational fluid dynamics (CFD) and computational structural dynamics simulations for flutter analysis of a real aircraft in the transonic regime. It is shown that a major consideration for a certain class of structural models is the transformation method, which is used to pass information between the fluid and structural grids. The aircraft used for the calculations is the BAE Systems Hawk. A structural model, which has been developed by BAE Systems for simplified linear flutter calculations, only has a requirement for (unknown symbol)(10) degrees of freedom. There is a significant mismatch between this and the surface grid on which loads and deflections are defined in the CFD calculation. This paper extends the constant volume tetrahedron tranformation, previously demonstrated for wing only aeroelastic calculations, to multicomponent, or full aircraft, cases and demonstrates this for the Hawk. A comparison is made with the predictions of a linear flutter code. [PUBLICATION ABSTRACT]</description><subject>Aerodynamics</subject><subject>Eulers equations</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>General theory</subject><subject>Military aircraft</subject><subject>Physics</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><subject>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><issn>0021-8669</issn><issn>1533-3868</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNptkE1LAzEQhoMoWKv-hkVRvGzNx26SPZZSrSB4secwTRNNTXfbJIv6791-QEE9Dcw8PO_wInRJ8ICWpLgng5JjeYR6pGQsZ5LLY9TDmJJccl6dorMYFxhjiYXoocnQhMZ4iMnpbARetx6Sa-qY2SZk6d1kE_j8yIYu6AA2ZdPo6rftftx6E7Lxut3x5-jEgo_mYj_7aPowfh1N8ueXx6fR8DkHJmjKwVjKNasqPpsVcyoIJVJqUhJaFlhwyueYFBUtjMVEzHE1A6u5FVxqY2hpBOuj2513FZp1a2JSSxe18R5q07RRUcmxqIqqA69-gYumDXX3m6KbpLIg7GDToYkxGKtWwS0hfCuC1aZNRdSmzQ682dsgavA2QK1dPNACYyYE7bjrHQcO4JD4x3b3L7W9qtXcKtt6n8xXYj-JtYri</recordid><startdate>20050701</startdate><enddate>20050701</enddate><creator>Woodgate, M. A</creator><creator>Badcock, K. J</creator><creator>Rampurawala, A. M</creator><creator>Richards, B. E</creator><creator>Nardini, D</creator><creator>Henshaw, M. J. deC</creator><general>American Institute of Aeronautics and Astronautics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>U9A</scope><scope>7SC</scope><scope>JQ2</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20050701</creationdate><title>Aeroelastic Calculations for the Hawk Aircraft Using the Euler Equations</title><author>Woodgate, M. A ; Badcock, K. J ; Rampurawala, A. M ; Richards, B. E ; Nardini, D ; Henshaw, M. J. deC</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a372t-aef26c3996bb4d2712188c15125407626d014924ef017d09bafc6f768cee25e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Aerodynamics</topic><topic>Eulers equations</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>General theory</topic><topic>Military aircraft</topic><topic>Physics</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><topic>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Woodgate, M. A</creatorcontrib><creatorcontrib>Badcock, K. J</creatorcontrib><creatorcontrib>Rampurawala, A. M</creatorcontrib><creatorcontrib>Richards, B. E</creatorcontrib><creatorcontrib>Nardini, D</creatorcontrib><creatorcontrib>Henshaw, M. J. deC</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of aircraft</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Woodgate, M. A</au><au>Badcock, K. J</au><au>Rampurawala, A. M</au><au>Richards, B. E</au><au>Nardini, D</au><au>Henshaw, M. J. deC</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Aeroelastic Calculations for the Hawk Aircraft Using the Euler Equations</atitle><jtitle>Journal of aircraft</jtitle><date>2005-07-01</date><risdate>2005</risdate><volume>42</volume><issue>4</issue><spage>1005</spage><epage>1012</epage><pages>1005-1012</pages><issn>0021-8669</issn><eissn>1533-3868</eissn><coden>JAIRAM</coden><abstract>This paper demonstrates coupled time domain computational fluid dynamics (CFD) and computational structural dynamics simulations for flutter analysis of a real aircraft in the transonic regime. It is shown that a major consideration for a certain class of structural models is the transformation method, which is used to pass information between the fluid and structural grids. The aircraft used for the calculations is the BAE Systems Hawk. A structural model, which has been developed by BAE Systems for simplified linear flutter calculations, only has a requirement for (unknown symbol)(10) degrees of freedom. There is a significant mismatch between this and the surface grid on which loads and deflections are defined in the CFD calculation. This paper extends the constant volume tetrahedron tranformation, previously demonstrated for wing only aeroelastic calculations, to multicomponent, or full aircraft, cases and demonstrates this for the Hawk. A comparison is made with the predictions of a linear flutter code. [PUBLICATION ABSTRACT]</abstract><cop>Reston, VA</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/1.5608</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-8669
ispartof Journal of aircraft, 2005-07, Vol.42 (4), p.1005-1012
issn 0021-8669
1533-3868
language eng
recordid cdi_crossref_primary_10_2514_1_5608
source Alma/SFX Local Collection
subjects Aerodynamics
Eulers equations
Exact sciences and technology
Fluid dynamics
Fundamental areas of phenomenology (including applications)
General theory
Military aircraft
Physics
Solid mechanics
Structural and continuum mechanics
Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)
title Aeroelastic Calculations for the Hawk Aircraft Using the Euler Equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T17%3A00%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Aeroelastic%20Calculations%20for%20the%20Hawk%20Aircraft%20Using%20the%20Euler%20Equations&rft.jtitle=Journal%20of%20aircraft&rft.au=Woodgate,%20M.%20A&rft.date=2005-07-01&rft.volume=42&rft.issue=4&rft.spage=1005&rft.epage=1012&rft.pages=1005-1012&rft.issn=0021-8669&rft.eissn=1533-3868&rft.coden=JAIRAM&rft_id=info:doi/10.2514/1.5608&rft_dat=%3Cproquest_cross%3E28607949%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=207625413&rft_id=info:pmid/&rfr_iscdi=true