Flight Testing of Multiple-Spacecraft Control on SPHERES During Close-Proximity Operations

A multiple-spacecraft close-proximity control algorithm was implemented and tested with the Synchronized Position Hold Engage and Reorient Experimental Satellites (SPHERES) facility onboard the International Space Station. During flight testing, a chaser satellite successfully approached a virtual t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of spacecraft and rockets 2009-11, Vol.46 (6), p.1202-1213
Hauptverfasser: McCamish, Shawn B, Romano, Marcello, Nolet, Simon, Edwards, Christine M, Miller, David W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1213
container_issue 6
container_start_page 1202
container_title Journal of spacecraft and rockets
container_volume 46
creator McCamish, Shawn B
Romano, Marcello
Nolet, Simon
Edwards, Christine M
Miller, David W
description A multiple-spacecraft close-proximity control algorithm was implemented and tested with the Synchronized Position Hold Engage and Reorient Experimental Satellites (SPHERES) facility onboard the International Space Station. During flight testing, a chaser satellite successfully approached a virtual target satellite while avoiding collision with a virtual obstacle satellite. This research contributes to the control of multiple spacecraft for emerging missions, which may require simultaneous gathering, rendezvous, and docking. The unique control algorithm was developed at the U.S. Naval Postgraduate School and integrated onto the Massachusetts Institute of Technology's SPHERES facility. The control algorithm implemented combines the efficiency of the linear quadratic regulator (used for attraction toward goal positions) and the robust collision-avoidance capability of the artificial potential field method (used for repulsion from moving obstacles). The amalgamation of these two control methods into a multiple-spacecraft close-proximity control algorithm yielded promising results, as demonstrated by simulations. Comprehensive simulation evaluation enabled implementation and ground testing of the spacecraft control algorithm on the SPHERES facility. Successful ground testing led to the execution of flight experiments onboard the International Space Station, which demonstrated the proposed algorithm in a microgravity environment. [PUBLISHER ABSTRACT]
doi_str_mv 10.2514/1.43563
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_2514_1_43563</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2161740423</sourcerecordid><originalsourceid>FETCH-LOGICAL-a410t-3076e4cbbb2b6bfff12e25bff2096b31e6bf62995c6aad28f79cdc85fddc668e3</originalsourceid><addsrcrecordid>eNp9kE9Lw0AQxRdRsFbxKywoiIfU_ZdNcpTYWkFpsfXiZdkku3VLmo2bDbTf3rTxICieZpj5zXvMA-ASoxEJMbvDI0ZDTo_AAIeUBjxK2DEYIERIwHiITsFZ06wRwjzmyQC8T0qz-vBwqRpvqhW0Gr60pTd1qYJFLXOVO6k9TG3lnS2hreBiPh2_jhfwoXX7g7S0jQrmzm7NxvgdnNXKSW9s1ZyDEy3LRl181yF4m4yX6TR4nj0-pffPgWQY-YCiiCuWZ1lGMp5prTFRJOwaghKeUay6ISdJEuZcyoLEOkryIo9DXRQ557GiQ3DV69bOfrbdH2JtW1d1loJgjiOGGKH_UZgyjvkhtSG46anc2aZxSovamY10O4GR2McrsDiAHXndk9JI-UPrF3b7J9avRV1ooduy9Grr6RcMBoXL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1346164356</pqid></control><display><type>article</type><title>Flight Testing of Multiple-Spacecraft Control on SPHERES During Close-Proximity Operations</title><source>Alma/SFX Local Collection</source><creator>McCamish, Shawn B ; Romano, Marcello ; Nolet, Simon ; Edwards, Christine M ; Miller, David W</creator><creatorcontrib>McCamish, Shawn B ; Romano, Marcello ; Nolet, Simon ; Edwards, Christine M ; Miller, David W</creatorcontrib><description>A multiple-spacecraft close-proximity control algorithm was implemented and tested with the Synchronized Position Hold Engage and Reorient Experimental Satellites (SPHERES) facility onboard the International Space Station. During flight testing, a chaser satellite successfully approached a virtual target satellite while avoiding collision with a virtual obstacle satellite. This research contributes to the control of multiple spacecraft for emerging missions, which may require simultaneous gathering, rendezvous, and docking. The unique control algorithm was developed at the U.S. Naval Postgraduate School and integrated onto the Massachusetts Institute of Technology's SPHERES facility. The control algorithm implemented combines the efficiency of the linear quadratic regulator (used for attraction toward goal positions) and the robust collision-avoidance capability of the artificial potential field method (used for repulsion from moving obstacles). The amalgamation of these two control methods into a multiple-spacecraft close-proximity control algorithm yielded promising results, as demonstrated by simulations. Comprehensive simulation evaluation enabled implementation and ground testing of the spacecraft control algorithm on the SPHERES facility. Successful ground testing led to the execution of flight experiments onboard the International Space Station, which demonstrated the proposed algorithm in a microgravity environment. [PUBLISHER ABSTRACT]</description><identifier>ISSN: 0022-4650</identifier><identifier>EISSN: 1533-6794</identifier><identifier>DOI: 10.2514/1.43563</identifier><language>eng</language><publisher>Reston: American Institute of Aeronautics and Astronautics</publisher><subject>Flight tests ; Spacecraft control</subject><ispartof>Journal of spacecraft and rockets, 2009-11, Vol.46 (6), p.1202-1213</ispartof><rights>Copyright American Institute of Aeronautics and Astronautics Nov-Dec 2009</rights><rights>Copyright American Institute of Aeronautics and Astronautics Nov/Dec 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a410t-3076e4cbbb2b6bfff12e25bff2096b31e6bf62995c6aad28f79cdc85fddc668e3</citedby><cites>FETCH-LOGICAL-a410t-3076e4cbbb2b6bfff12e25bff2096b31e6bf62995c6aad28f79cdc85fddc668e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>McCamish, Shawn B</creatorcontrib><creatorcontrib>Romano, Marcello</creatorcontrib><creatorcontrib>Nolet, Simon</creatorcontrib><creatorcontrib>Edwards, Christine M</creatorcontrib><creatorcontrib>Miller, David W</creatorcontrib><title>Flight Testing of Multiple-Spacecraft Control on SPHERES During Close-Proximity Operations</title><title>Journal of spacecraft and rockets</title><description>A multiple-spacecraft close-proximity control algorithm was implemented and tested with the Synchronized Position Hold Engage and Reorient Experimental Satellites (SPHERES) facility onboard the International Space Station. During flight testing, a chaser satellite successfully approached a virtual target satellite while avoiding collision with a virtual obstacle satellite. This research contributes to the control of multiple spacecraft for emerging missions, which may require simultaneous gathering, rendezvous, and docking. The unique control algorithm was developed at the U.S. Naval Postgraduate School and integrated onto the Massachusetts Institute of Technology's SPHERES facility. The control algorithm implemented combines the efficiency of the linear quadratic regulator (used for attraction toward goal positions) and the robust collision-avoidance capability of the artificial potential field method (used for repulsion from moving obstacles). The amalgamation of these two control methods into a multiple-spacecraft close-proximity control algorithm yielded promising results, as demonstrated by simulations. Comprehensive simulation evaluation enabled implementation and ground testing of the spacecraft control algorithm on the SPHERES facility. Successful ground testing led to the execution of flight experiments onboard the International Space Station, which demonstrated the proposed algorithm in a microgravity environment. [PUBLISHER ABSTRACT]</description><subject>Flight tests</subject><subject>Spacecraft control</subject><issn>0022-4650</issn><issn>1533-6794</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kE9Lw0AQxRdRsFbxKywoiIfU_ZdNcpTYWkFpsfXiZdkku3VLmo2bDbTf3rTxICieZpj5zXvMA-ASoxEJMbvDI0ZDTo_AAIeUBjxK2DEYIERIwHiITsFZ06wRwjzmyQC8T0qz-vBwqRpvqhW0Gr60pTd1qYJFLXOVO6k9TG3lnS2hreBiPh2_jhfwoXX7g7S0jQrmzm7NxvgdnNXKSW9s1ZyDEy3LRl181yF4m4yX6TR4nj0-pffPgWQY-YCiiCuWZ1lGMp5prTFRJOwaghKeUay6ISdJEuZcyoLEOkryIo9DXRQ557GiQ3DV69bOfrbdH2JtW1d1loJgjiOGGKH_UZgyjvkhtSG46anc2aZxSovamY10O4GR2McrsDiAHXndk9JI-UPrF3b7J9avRV1ooduy9Grr6RcMBoXL</recordid><startdate>20091101</startdate><enddate>20091101</enddate><creator>McCamish, Shawn B</creator><creator>Romano, Marcello</creator><creator>Nolet, Simon</creator><creator>Edwards, Christine M</creator><creator>Miller, David W</creator><general>American Institute of Aeronautics and Astronautics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20091101</creationdate><title>Flight Testing of Multiple-Spacecraft Control on SPHERES During Close-Proximity Operations</title><author>McCamish, Shawn B ; Romano, Marcello ; Nolet, Simon ; Edwards, Christine M ; Miller, David W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a410t-3076e4cbbb2b6bfff12e25bff2096b31e6bf62995c6aad28f79cdc85fddc668e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Flight tests</topic><topic>Spacecraft control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McCamish, Shawn B</creatorcontrib><creatorcontrib>Romano, Marcello</creatorcontrib><creatorcontrib>Nolet, Simon</creatorcontrib><creatorcontrib>Edwards, Christine M</creatorcontrib><creatorcontrib>Miller, David W</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of spacecraft and rockets</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McCamish, Shawn B</au><au>Romano, Marcello</au><au>Nolet, Simon</au><au>Edwards, Christine M</au><au>Miller, David W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flight Testing of Multiple-Spacecraft Control on SPHERES During Close-Proximity Operations</atitle><jtitle>Journal of spacecraft and rockets</jtitle><date>2009-11-01</date><risdate>2009</risdate><volume>46</volume><issue>6</issue><spage>1202</spage><epage>1213</epage><pages>1202-1213</pages><issn>0022-4650</issn><eissn>1533-6794</eissn><abstract>A multiple-spacecraft close-proximity control algorithm was implemented and tested with the Synchronized Position Hold Engage and Reorient Experimental Satellites (SPHERES) facility onboard the International Space Station. During flight testing, a chaser satellite successfully approached a virtual target satellite while avoiding collision with a virtual obstacle satellite. This research contributes to the control of multiple spacecraft for emerging missions, which may require simultaneous gathering, rendezvous, and docking. The unique control algorithm was developed at the U.S. Naval Postgraduate School and integrated onto the Massachusetts Institute of Technology's SPHERES facility. The control algorithm implemented combines the efficiency of the linear quadratic regulator (used for attraction toward goal positions) and the robust collision-avoidance capability of the artificial potential field method (used for repulsion from moving obstacles). The amalgamation of these two control methods into a multiple-spacecraft close-proximity control algorithm yielded promising results, as demonstrated by simulations. Comprehensive simulation evaluation enabled implementation and ground testing of the spacecraft control algorithm on the SPHERES facility. Successful ground testing led to the execution of flight experiments onboard the International Space Station, which demonstrated the proposed algorithm in a microgravity environment. [PUBLISHER ABSTRACT]</abstract><cop>Reston</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/1.43563</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-4650
ispartof Journal of spacecraft and rockets, 2009-11, Vol.46 (6), p.1202-1213
issn 0022-4650
1533-6794
language eng
recordid cdi_crossref_primary_10_2514_1_43563
source Alma/SFX Local Collection
subjects Flight tests
Spacecraft control
title Flight Testing of Multiple-Spacecraft Control on SPHERES During Close-Proximity Operations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T03%3A45%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flight%20Testing%20of%20Multiple-Spacecraft%20Control%20on%20SPHERES%20During%20Close-Proximity%20Operations&rft.jtitle=Journal%20of%20spacecraft%20and%20rockets&rft.au=McCamish,%20Shawn%20B&rft.date=2009-11-01&rft.volume=46&rft.issue=6&rft.spage=1202&rft.epage=1213&rft.pages=1202-1213&rft.issn=0022-4650&rft.eissn=1533-6794&rft_id=info:doi/10.2514/1.43563&rft_dat=%3Cproquest_cross%3E2161740423%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1346164356&rft_id=info:pmid/&rfr_iscdi=true