Performance of High-Order-Accurate, Low-Diffusion Numerical Schemes for Compressible Flow

High-order-accurate methods for the compressible flow equations in complex domains are evaluated. The first class of methods is appropriate for flows without discontinuities and uses high-order-accurate, centered space discretizations. The methods postprocess the computed solution with explicit spec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIAA journal 2004-03, Vol.42 (3), p.493-500
1. Verfasser: Ekaterinaris, John A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 500
container_issue 3
container_start_page 493
container_title AIAA journal
container_volume 42
creator Ekaterinaris, John A
description High-order-accurate methods for the compressible flow equations in complex domains are evaluated. The first class of methods is appropriate for flows without discontinuities and uses high-order-accurate, centered space discretizations. The methods postprocess the computed solution with explicit spectral-type filters. The second class of methods uses centered schemes with characteristic-based filters and the artificial compression method, which makes it appropriate for discontinuous flows. The third class is the weighted essentially nonoscillatory finite difference schemes. Numerical solutions of model aeroacoustic problems and compressible flowfields are computed, and the accuracy of each method is evaluated.
doi_str_mv 10.2514/1.2724
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_2514_1_2724</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>28318631</sourcerecordid><originalsourceid>FETCH-LOGICAL-a432t-b28126acc0ad3b4093a2fe905ff209d417784da7b12166db7ab6aecb3a881043</originalsourceid><addsrcrecordid>eNqNkV1L5DAUhoO44Di7_oaiKF5YzVebzuUwfszCsArrhV6F0_REI-1kTFrUf2_LCH6w4ELgEHh4Xs55Cdlh9JhnTJ6wY6643CAjlgmRiiK72SQjSilLmcz4FtmO8aH_cVWwEbm9wmB9aGBpMPE2mbu7-_QyVBjSqTFdgBaPkoV_Sk-dtV10fpn86RoMzkCd_DX32GBMekEy880qYIyurDE5r_3TT_LDQh3x19sck-vzs-vZPF1cXvyeTRcpSMHbtOQF4zkYQ6ESpaQTAdzihGbWcjqpJFOqkBWoknGW51WpoMwBTSmgKBiVYkwO1tpV8I8dxlY3Lhqsa1ii76LmE0qV4Ox7sBD9o_R_QFbkYjDufgEffBeW_bKaD7cXUnyINcHHGNDqVXANhBfNqB760kwPffXg_psNYn9cG_pKXHyns0wpSQfh4ZoDB_CeuLboVWW17eq6xee2R_f-iX4OfgVUPqvR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>215333431</pqid></control><display><type>article</type><title>Performance of High-Order-Accurate, Low-Diffusion Numerical Schemes for Compressible Flow</title><source>Alma/SFX Local Collection</source><creator>Ekaterinaris, John A</creator><creatorcontrib>Ekaterinaris, John A</creatorcontrib><description>High-order-accurate methods for the compressible flow equations in complex domains are evaluated. The first class of methods is appropriate for flows without discontinuities and uses high-order-accurate, centered space discretizations. The methods postprocess the computed solution with explicit spectral-type filters. The second class of methods uses centered schemes with characteristic-based filters and the artificial compression method, which makes it appropriate for discontinuous flows. The third class is the weighted essentially nonoscillatory finite difference schemes. Numerical solutions of model aeroacoustic problems and compressible flowfields are computed, and the accuracy of each method is evaluated.</description><identifier>ISSN: 0001-1452</identifier><identifier>EISSN: 1533-385X</identifier><identifier>DOI: 10.2514/1.2724</identifier><identifier>CODEN: AIAJAH</identifier><language>eng</language><publisher>Reston, VA: American Institute of Aeronautics and Astronautics</publisher><subject>Computational methods in fluid dynamics ; Diffusion ; Exact sciences and technology ; Filters ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; Methods ; Physics ; Solutions</subject><ispartof>AIAA journal, 2004-03, Vol.42 (3), p.493-500</ispartof><rights>2004 INIST-CNRS</rights><rights>Copyright American Institute of Aeronautics and Astronautics Mar 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a432t-b28126acc0ad3b4093a2fe905ff209d417784da7b12166db7ab6aecb3a881043</citedby><cites>FETCH-LOGICAL-a432t-b28126acc0ad3b4093a2fe905ff209d417784da7b12166db7ab6aecb3a881043</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15577401$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ekaterinaris, John A</creatorcontrib><title>Performance of High-Order-Accurate, Low-Diffusion Numerical Schemes for Compressible Flow</title><title>AIAA journal</title><description>High-order-accurate methods for the compressible flow equations in complex domains are evaluated. The first class of methods is appropriate for flows without discontinuities and uses high-order-accurate, centered space discretizations. The methods postprocess the computed solution with explicit spectral-type filters. The second class of methods uses centered schemes with characteristic-based filters and the artificial compression method, which makes it appropriate for discontinuous flows. The third class is the weighted essentially nonoscillatory finite difference schemes. Numerical solutions of model aeroacoustic problems and compressible flowfields are computed, and the accuracy of each method is evaluated.</description><subject>Computational methods in fluid dynamics</subject><subject>Diffusion</subject><subject>Exact sciences and technology</subject><subject>Filters</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Methods</subject><subject>Physics</subject><subject>Solutions</subject><issn>0001-1452</issn><issn>1533-385X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqNkV1L5DAUhoO44Di7_oaiKF5YzVebzuUwfszCsArrhV6F0_REI-1kTFrUf2_LCH6w4ELgEHh4Xs55Cdlh9JhnTJ6wY6643CAjlgmRiiK72SQjSilLmcz4FtmO8aH_cVWwEbm9wmB9aGBpMPE2mbu7-_QyVBjSqTFdgBaPkoV_Sk-dtV10fpn86RoMzkCd_DX32GBMekEy880qYIyurDE5r_3TT_LDQh3x19sck-vzs-vZPF1cXvyeTRcpSMHbtOQF4zkYQ6ESpaQTAdzihGbWcjqpJFOqkBWoknGW51WpoMwBTSmgKBiVYkwO1tpV8I8dxlY3Lhqsa1ii76LmE0qV4Ox7sBD9o_R_QFbkYjDufgEffBeW_bKaD7cXUnyINcHHGNDqVXANhBfNqB760kwPffXg_psNYn9cG_pKXHyns0wpSQfh4ZoDB_CeuLboVWW17eq6xee2R_f-iX4OfgVUPqvR</recordid><startdate>20040301</startdate><enddate>20040301</enddate><creator>Ekaterinaris, John A</creator><general>American Institute of Aeronautics and Astronautics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>7SC</scope><scope>7U5</scope><scope>JQ2</scope><scope>KR7</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20040301</creationdate><title>Performance of High-Order-Accurate, Low-Diffusion Numerical Schemes for Compressible Flow</title><author>Ekaterinaris, John A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a432t-b28126acc0ad3b4093a2fe905ff209d417784da7b12166db7ab6aecb3a881043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Computational methods in fluid dynamics</topic><topic>Diffusion</topic><topic>Exact sciences and technology</topic><topic>Filters</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Methods</topic><topic>Physics</topic><topic>Solutions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ekaterinaris, John A</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>AIAA journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ekaterinaris, John A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance of High-Order-Accurate, Low-Diffusion Numerical Schemes for Compressible Flow</atitle><jtitle>AIAA journal</jtitle><date>2004-03-01</date><risdate>2004</risdate><volume>42</volume><issue>3</issue><spage>493</spage><epage>500</epage><pages>493-500</pages><issn>0001-1452</issn><eissn>1533-385X</eissn><coden>AIAJAH</coden><abstract>High-order-accurate methods for the compressible flow equations in complex domains are evaluated. The first class of methods is appropriate for flows without discontinuities and uses high-order-accurate, centered space discretizations. The methods postprocess the computed solution with explicit spectral-type filters. The second class of methods uses centered schemes with characteristic-based filters and the artificial compression method, which makes it appropriate for discontinuous flows. The third class is the weighted essentially nonoscillatory finite difference schemes. Numerical solutions of model aeroacoustic problems and compressible flowfields are computed, and the accuracy of each method is evaluated.</abstract><cop>Reston, VA</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/1.2724</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-1452
ispartof AIAA journal, 2004-03, Vol.42 (3), p.493-500
issn 0001-1452
1533-385X
language eng
recordid cdi_crossref_primary_10_2514_1_2724
source Alma/SFX Local Collection
subjects Computational methods in fluid dynamics
Diffusion
Exact sciences and technology
Filters
Fluid dynamics
Fundamental areas of phenomenology (including applications)
Methods
Physics
Solutions
title Performance of High-Order-Accurate, Low-Diffusion Numerical Schemes for Compressible Flow
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T22%3A45%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20of%20High-Order-Accurate,%20Low-Diffusion%20Numerical%20Schemes%20for%20Compressible%20Flow&rft.jtitle=AIAA%20journal&rft.au=Ekaterinaris,%20John%20A&rft.date=2004-03-01&rft.volume=42&rft.issue=3&rft.spage=493&rft.epage=500&rft.pages=493-500&rft.issn=0001-1452&rft.eissn=1533-385X&rft.coden=AIAJAH&rft_id=info:doi/10.2514/1.2724&rft_dat=%3Cproquest_cross%3E28318631%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=215333431&rft_id=info:pmid/&rfr_iscdi=true