Fast Prediction of Transonic Aeroelastic Stability and Limit Cycles

The exploitation of computational fluid dynamics for aeroelastic simulations is mainly based on time-domain simulations. There is an intense research effort to overcome the computational cost of this approach. Significant aeroelastic effects driven by nonlinear aerodynamics include the transonic flu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIAA journal 2007-06, Vol.45 (6), p.1370-1381
Hauptverfasser: Woodgate, M. A, Badcock, K. J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1381
container_issue 6
container_start_page 1370
container_title AIAA journal
container_volume 45
creator Woodgate, M. A
Badcock, K. J
description The exploitation of computational fluid dynamics for aeroelastic simulations is mainly based on time-domain simulations. There is an intense research effort to overcome the computational cost of this approach. Significant aeroelastic effects driven by nonlinear aerodynamics include the transonic flutter dip and limit-cycle oscillations. The paper describes the use of Hopf bifurcation and center manifold theory to compute flutter speeds and limit-cycle responses of wings in transonic flow when the aerodynamics are modeled by the Euler equations. The cost of the calculations is comparable to steady-state calculations based on computational fluid dynamics. The paper describes two methods for finding stability boundaries and then an approach to reducing the full-order system to two degrees of freedom in the critical mode. Details of the three methods are given, including the calculation of first, second, and third Jacobians and the solution of sparse linear systems. Results for the AGARD wing, a supercritical transport type of wing, and the limit-cycle response of the Goland wing are given. [PUBLICATION ABSTRACT]
doi_str_mv 10.2514/1.25604
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_2514_1_25604</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29829359</sourcerecordid><originalsourceid>FETCH-LOGICAL-a376t-f9fa181dd5107a64d10951f3ed15e8749055d47d15f184efba452c3c8ef7923d3</originalsourceid><addsrcrecordid>eNpt0NtKAzEQBuAgCtYqvsIiHvBiNbPZ7GYvS7EqFBSs4F1Ic4CUdLcmKdi3N3ULBfVqMszHZPgROgd8V1Ao7yGVCpcHaACUkJww-nGIBhhjyKGkxTE6CWGRuqJmMEDjiQgxe_VaWRlt12adyWZetKFrrcxG2nfaJZHeb1HMrbNxk4lWZVO7tDEbb6TT4RQdGeGCPtvVIXqfPMzGT_n05fF5PJrmgtRVzE1jBDBQigKuRVUqwA0FQ7QCqlldNphSVdapM8BKbeYinSuJZNrUTUEUGaLrfu_Kd59rHSJf2iC1c6LV3TrwomFFQ2iT4MUvuOjWvk238WIbClSwRTc9kr4LwWvDV94uhd9wwHybJAf-k2SSV7t1IkjhTIpH2rDnjEHJGE7usnfCCrH_8u-6239ZP-YrZbhZOxf1VyTfye6KTA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>215331619</pqid></control><display><type>article</type><title>Fast Prediction of Transonic Aeroelastic Stability and Limit Cycles</title><source>Alma/SFX Local Collection</source><creator>Woodgate, M. A ; Badcock, K. J</creator><creatorcontrib>Woodgate, M. A ; Badcock, K. J</creatorcontrib><description>The exploitation of computational fluid dynamics for aeroelastic simulations is mainly based on time-domain simulations. There is an intense research effort to overcome the computational cost of this approach. Significant aeroelastic effects driven by nonlinear aerodynamics include the transonic flutter dip and limit-cycle oscillations. The paper describes the use of Hopf bifurcation and center manifold theory to compute flutter speeds and limit-cycle responses of wings in transonic flow when the aerodynamics are modeled by the Euler equations. The cost of the calculations is comparable to steady-state calculations based on computational fluid dynamics. The paper describes two methods for finding stability boundaries and then an approach to reducing the full-order system to two degrees of freedom in the critical mode. Details of the three methods are given, including the calculation of first, second, and third Jacobians and the solution of sparse linear systems. Results for the AGARD wing, a supercritical transport type of wing, and the limit-cycle response of the Goland wing are given. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 0001-1452</identifier><identifier>EISSN: 1533-385X</identifier><identifier>DOI: 10.2514/1.25604</identifier><identifier>CODEN: AIAJAH</identifier><language>eng</language><publisher>Reston, VA: American Institute of Aeronautics and Astronautics</publisher><subject>Aerodynamics ; Aircraft ; Compressible flows; shock and detonation phenomena ; Eulers equations ; Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; General theory ; Physics ; Shock-wave interactions and shock effects ; Simulation ; Solid mechanics ; Structural and continuum mechanics ; Velocity ; Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><ispartof>AIAA journal, 2007-06, Vol.45 (6), p.1370-1381</ispartof><rights>2007 INIST-CNRS</rights><rights>Copyright American Institute of Aeronautics and Astronautics Jun 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a376t-f9fa181dd5107a64d10951f3ed15e8749055d47d15f184efba452c3c8ef7923d3</citedby><cites>FETCH-LOGICAL-a376t-f9fa181dd5107a64d10951f3ed15e8749055d47d15f184efba452c3c8ef7923d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18814880$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Woodgate, M. A</creatorcontrib><creatorcontrib>Badcock, K. J</creatorcontrib><title>Fast Prediction of Transonic Aeroelastic Stability and Limit Cycles</title><title>AIAA journal</title><description>The exploitation of computational fluid dynamics for aeroelastic simulations is mainly based on time-domain simulations. There is an intense research effort to overcome the computational cost of this approach. Significant aeroelastic effects driven by nonlinear aerodynamics include the transonic flutter dip and limit-cycle oscillations. The paper describes the use of Hopf bifurcation and center manifold theory to compute flutter speeds and limit-cycle responses of wings in transonic flow when the aerodynamics are modeled by the Euler equations. The cost of the calculations is comparable to steady-state calculations based on computational fluid dynamics. The paper describes two methods for finding stability boundaries and then an approach to reducing the full-order system to two degrees of freedom in the critical mode. Details of the three methods are given, including the calculation of first, second, and third Jacobians and the solution of sparse linear systems. Results for the AGARD wing, a supercritical transport type of wing, and the limit-cycle response of the Goland wing are given. [PUBLICATION ABSTRACT]</description><subject>Aerodynamics</subject><subject>Aircraft</subject><subject>Compressible flows; shock and detonation phenomena</subject><subject>Eulers equations</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>General theory</subject><subject>Physics</subject><subject>Shock-wave interactions and shock effects</subject><subject>Simulation</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><subject>Velocity</subject><subject>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><issn>0001-1452</issn><issn>1533-385X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNpt0NtKAzEQBuAgCtYqvsIiHvBiNbPZ7GYvS7EqFBSs4F1Ic4CUdLcmKdi3N3ULBfVqMszHZPgROgd8V1Ao7yGVCpcHaACUkJww-nGIBhhjyKGkxTE6CWGRuqJmMEDjiQgxe_VaWRlt12adyWZetKFrrcxG2nfaJZHeb1HMrbNxk4lWZVO7tDEbb6TT4RQdGeGCPtvVIXqfPMzGT_n05fF5PJrmgtRVzE1jBDBQigKuRVUqwA0FQ7QCqlldNphSVdapM8BKbeYinSuJZNrUTUEUGaLrfu_Kd59rHSJf2iC1c6LV3TrwomFFQ2iT4MUvuOjWvk238WIbClSwRTc9kr4LwWvDV94uhd9wwHybJAf-k2SSV7t1IkjhTIpH2rDnjEHJGE7usnfCCrH_8u-6239ZP-YrZbhZOxf1VyTfye6KTA</recordid><startdate>20070601</startdate><enddate>20070601</enddate><creator>Woodgate, M. A</creator><creator>Badcock, K. J</creator><general>American Institute of Aeronautics and Astronautics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20070601</creationdate><title>Fast Prediction of Transonic Aeroelastic Stability and Limit Cycles</title><author>Woodgate, M. A ; Badcock, K. J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a376t-f9fa181dd5107a64d10951f3ed15e8749055d47d15f184efba452c3c8ef7923d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Aerodynamics</topic><topic>Aircraft</topic><topic>Compressible flows; shock and detonation phenomena</topic><topic>Eulers equations</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>General theory</topic><topic>Physics</topic><topic>Shock-wave interactions and shock effects</topic><topic>Simulation</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><topic>Velocity</topic><topic>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Woodgate, M. A</creatorcontrib><creatorcontrib>Badcock, K. J</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>AIAA journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Woodgate, M. A</au><au>Badcock, K. J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast Prediction of Transonic Aeroelastic Stability and Limit Cycles</atitle><jtitle>AIAA journal</jtitle><date>2007-06-01</date><risdate>2007</risdate><volume>45</volume><issue>6</issue><spage>1370</spage><epage>1381</epage><pages>1370-1381</pages><issn>0001-1452</issn><eissn>1533-385X</eissn><coden>AIAJAH</coden><abstract>The exploitation of computational fluid dynamics for aeroelastic simulations is mainly based on time-domain simulations. There is an intense research effort to overcome the computational cost of this approach. Significant aeroelastic effects driven by nonlinear aerodynamics include the transonic flutter dip and limit-cycle oscillations. The paper describes the use of Hopf bifurcation and center manifold theory to compute flutter speeds and limit-cycle responses of wings in transonic flow when the aerodynamics are modeled by the Euler equations. The cost of the calculations is comparable to steady-state calculations based on computational fluid dynamics. The paper describes two methods for finding stability boundaries and then an approach to reducing the full-order system to two degrees of freedom in the critical mode. Details of the three methods are given, including the calculation of first, second, and third Jacobians and the solution of sparse linear systems. Results for the AGARD wing, a supercritical transport type of wing, and the limit-cycle response of the Goland wing are given. [PUBLICATION ABSTRACT]</abstract><cop>Reston, VA</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/1.25604</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-1452
ispartof AIAA journal, 2007-06, Vol.45 (6), p.1370-1381
issn 0001-1452
1533-385X
language eng
recordid cdi_crossref_primary_10_2514_1_25604
source Alma/SFX Local Collection
subjects Aerodynamics
Aircraft
Compressible flows
shock and detonation phenomena
Eulers equations
Exact sciences and technology
Fluid dynamics
Fundamental areas of phenomenology (including applications)
General theory
Physics
Shock-wave interactions and shock effects
Simulation
Solid mechanics
Structural and continuum mechanics
Velocity
Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)
title Fast Prediction of Transonic Aeroelastic Stability and Limit Cycles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T06%3A32%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20Prediction%20of%20Transonic%20Aeroelastic%20Stability%20and%20Limit%20Cycles&rft.jtitle=AIAA%20journal&rft.au=Woodgate,%20M.%20A&rft.date=2007-06-01&rft.volume=45&rft.issue=6&rft.spage=1370&rft.epage=1381&rft.pages=1370-1381&rft.issn=0001-1452&rft.eissn=1533-385X&rft.coden=AIAJAH&rft_id=info:doi/10.2514/1.25604&rft_dat=%3Cproquest_cross%3E29829359%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=215331619&rft_id=info:pmid/&rfr_iscdi=true