Fast Prediction of Transonic Aeroelastic Stability and Limit Cycles
The exploitation of computational fluid dynamics for aeroelastic simulations is mainly based on time-domain simulations. There is an intense research effort to overcome the computational cost of this approach. Significant aeroelastic effects driven by nonlinear aerodynamics include the transonic flu...
Gespeichert in:
Veröffentlicht in: | AIAA journal 2007-06, Vol.45 (6), p.1370-1381 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1381 |
---|---|
container_issue | 6 |
container_start_page | 1370 |
container_title | AIAA journal |
container_volume | 45 |
creator | Woodgate, M. A Badcock, K. J |
description | The exploitation of computational fluid dynamics for aeroelastic simulations is mainly based on time-domain simulations. There is an intense research effort to overcome the computational cost of this approach. Significant aeroelastic effects driven by nonlinear aerodynamics include the transonic flutter dip and limit-cycle oscillations. The paper describes the use of Hopf bifurcation and center manifold theory to compute flutter speeds and limit-cycle responses of wings in transonic flow when the aerodynamics are modeled by the Euler equations. The cost of the calculations is comparable to steady-state calculations based on computational fluid dynamics. The paper describes two methods for finding stability boundaries and then an approach to reducing the full-order system to two degrees of freedom in the critical mode. Details of the three methods are given, including the calculation of first, second, and third Jacobians and the solution of sparse linear systems. Results for the AGARD wing, a supercritical transport type of wing, and the limit-cycle response of the Goland wing are given. [PUBLICATION ABSTRACT] |
doi_str_mv | 10.2514/1.25604 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_2514_1_25604</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29829359</sourcerecordid><originalsourceid>FETCH-LOGICAL-a376t-f9fa181dd5107a64d10951f3ed15e8749055d47d15f184efba452c3c8ef7923d3</originalsourceid><addsrcrecordid>eNpt0NtKAzEQBuAgCtYqvsIiHvBiNbPZ7GYvS7EqFBSs4F1Ic4CUdLcmKdi3N3ULBfVqMszHZPgROgd8V1Ao7yGVCpcHaACUkJww-nGIBhhjyKGkxTE6CWGRuqJmMEDjiQgxe_VaWRlt12adyWZetKFrrcxG2nfaJZHeb1HMrbNxk4lWZVO7tDEbb6TT4RQdGeGCPtvVIXqfPMzGT_n05fF5PJrmgtRVzE1jBDBQigKuRVUqwA0FQ7QCqlldNphSVdapM8BKbeYinSuJZNrUTUEUGaLrfu_Kd59rHSJf2iC1c6LV3TrwomFFQ2iT4MUvuOjWvk238WIbClSwRTc9kr4LwWvDV94uhd9wwHybJAf-k2SSV7t1IkjhTIpH2rDnjEHJGE7usnfCCrH_8u-6239ZP-YrZbhZOxf1VyTfye6KTA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>215331619</pqid></control><display><type>article</type><title>Fast Prediction of Transonic Aeroelastic Stability and Limit Cycles</title><source>Alma/SFX Local Collection</source><creator>Woodgate, M. A ; Badcock, K. J</creator><creatorcontrib>Woodgate, M. A ; Badcock, K. J</creatorcontrib><description>The exploitation of computational fluid dynamics for aeroelastic simulations is mainly based on time-domain simulations. There is an intense research effort to overcome the computational cost of this approach. Significant aeroelastic effects driven by nonlinear aerodynamics include the transonic flutter dip and limit-cycle oscillations. The paper describes the use of Hopf bifurcation and center manifold theory to compute flutter speeds and limit-cycle responses of wings in transonic flow when the aerodynamics are modeled by the Euler equations. The cost of the calculations is comparable to steady-state calculations based on computational fluid dynamics. The paper describes two methods for finding stability boundaries and then an approach to reducing the full-order system to two degrees of freedom in the critical mode. Details of the three methods are given, including the calculation of first, second, and third Jacobians and the solution of sparse linear systems. Results for the AGARD wing, a supercritical transport type of wing, and the limit-cycle response of the Goland wing are given. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 0001-1452</identifier><identifier>EISSN: 1533-385X</identifier><identifier>DOI: 10.2514/1.25604</identifier><identifier>CODEN: AIAJAH</identifier><language>eng</language><publisher>Reston, VA: American Institute of Aeronautics and Astronautics</publisher><subject>Aerodynamics ; Aircraft ; Compressible flows; shock and detonation phenomena ; Eulers equations ; Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; General theory ; Physics ; Shock-wave interactions and shock effects ; Simulation ; Solid mechanics ; Structural and continuum mechanics ; Velocity ; Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><ispartof>AIAA journal, 2007-06, Vol.45 (6), p.1370-1381</ispartof><rights>2007 INIST-CNRS</rights><rights>Copyright American Institute of Aeronautics and Astronautics Jun 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a376t-f9fa181dd5107a64d10951f3ed15e8749055d47d15f184efba452c3c8ef7923d3</citedby><cites>FETCH-LOGICAL-a376t-f9fa181dd5107a64d10951f3ed15e8749055d47d15f184efba452c3c8ef7923d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18814880$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Woodgate, M. A</creatorcontrib><creatorcontrib>Badcock, K. J</creatorcontrib><title>Fast Prediction of Transonic Aeroelastic Stability and Limit Cycles</title><title>AIAA journal</title><description>The exploitation of computational fluid dynamics for aeroelastic simulations is mainly based on time-domain simulations. There is an intense research effort to overcome the computational cost of this approach. Significant aeroelastic effects driven by nonlinear aerodynamics include the transonic flutter dip and limit-cycle oscillations. The paper describes the use of Hopf bifurcation and center manifold theory to compute flutter speeds and limit-cycle responses of wings in transonic flow when the aerodynamics are modeled by the Euler equations. The cost of the calculations is comparable to steady-state calculations based on computational fluid dynamics. The paper describes two methods for finding stability boundaries and then an approach to reducing the full-order system to two degrees of freedom in the critical mode. Details of the three methods are given, including the calculation of first, second, and third Jacobians and the solution of sparse linear systems. Results for the AGARD wing, a supercritical transport type of wing, and the limit-cycle response of the Goland wing are given. [PUBLICATION ABSTRACT]</description><subject>Aerodynamics</subject><subject>Aircraft</subject><subject>Compressible flows; shock and detonation phenomena</subject><subject>Eulers equations</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>General theory</subject><subject>Physics</subject><subject>Shock-wave interactions and shock effects</subject><subject>Simulation</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><subject>Velocity</subject><subject>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><issn>0001-1452</issn><issn>1533-385X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNpt0NtKAzEQBuAgCtYqvsIiHvBiNbPZ7GYvS7EqFBSs4F1Ic4CUdLcmKdi3N3ULBfVqMszHZPgROgd8V1Ao7yGVCpcHaACUkJww-nGIBhhjyKGkxTE6CWGRuqJmMEDjiQgxe_VaWRlt12adyWZetKFrrcxG2nfaJZHeb1HMrbNxk4lWZVO7tDEbb6TT4RQdGeGCPtvVIXqfPMzGT_n05fF5PJrmgtRVzE1jBDBQigKuRVUqwA0FQ7QCqlldNphSVdapM8BKbeYinSuJZNrUTUEUGaLrfu_Kd59rHSJf2iC1c6LV3TrwomFFQ2iT4MUvuOjWvk238WIbClSwRTc9kr4LwWvDV94uhd9wwHybJAf-k2SSV7t1IkjhTIpH2rDnjEHJGE7usnfCCrH_8u-6239ZP-YrZbhZOxf1VyTfye6KTA</recordid><startdate>20070601</startdate><enddate>20070601</enddate><creator>Woodgate, M. A</creator><creator>Badcock, K. J</creator><general>American Institute of Aeronautics and Astronautics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20070601</creationdate><title>Fast Prediction of Transonic Aeroelastic Stability and Limit Cycles</title><author>Woodgate, M. A ; Badcock, K. J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a376t-f9fa181dd5107a64d10951f3ed15e8749055d47d15f184efba452c3c8ef7923d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Aerodynamics</topic><topic>Aircraft</topic><topic>Compressible flows; shock and detonation phenomena</topic><topic>Eulers equations</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>General theory</topic><topic>Physics</topic><topic>Shock-wave interactions and shock effects</topic><topic>Simulation</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><topic>Velocity</topic><topic>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Woodgate, M. A</creatorcontrib><creatorcontrib>Badcock, K. J</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>AIAA journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Woodgate, M. A</au><au>Badcock, K. J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast Prediction of Transonic Aeroelastic Stability and Limit Cycles</atitle><jtitle>AIAA journal</jtitle><date>2007-06-01</date><risdate>2007</risdate><volume>45</volume><issue>6</issue><spage>1370</spage><epage>1381</epage><pages>1370-1381</pages><issn>0001-1452</issn><eissn>1533-385X</eissn><coden>AIAJAH</coden><abstract>The exploitation of computational fluid dynamics for aeroelastic simulations is mainly based on time-domain simulations. There is an intense research effort to overcome the computational cost of this approach. Significant aeroelastic effects driven by nonlinear aerodynamics include the transonic flutter dip and limit-cycle oscillations. The paper describes the use of Hopf bifurcation and center manifold theory to compute flutter speeds and limit-cycle responses of wings in transonic flow when the aerodynamics are modeled by the Euler equations. The cost of the calculations is comparable to steady-state calculations based on computational fluid dynamics. The paper describes two methods for finding stability boundaries and then an approach to reducing the full-order system to two degrees of freedom in the critical mode. Details of the three methods are given, including the calculation of first, second, and third Jacobians and the solution of sparse linear systems. Results for the AGARD wing, a supercritical transport type of wing, and the limit-cycle response of the Goland wing are given. [PUBLICATION ABSTRACT]</abstract><cop>Reston, VA</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/1.25604</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-1452 |
ispartof | AIAA journal, 2007-06, Vol.45 (6), p.1370-1381 |
issn | 0001-1452 1533-385X |
language | eng |
recordid | cdi_crossref_primary_10_2514_1_25604 |
source | Alma/SFX Local Collection |
subjects | Aerodynamics Aircraft Compressible flows shock and detonation phenomena Eulers equations Exact sciences and technology Fluid dynamics Fundamental areas of phenomenology (including applications) General theory Physics Shock-wave interactions and shock effects Simulation Solid mechanics Structural and continuum mechanics Velocity Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...) |
title | Fast Prediction of Transonic Aeroelastic Stability and Limit Cycles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T06%3A32%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20Prediction%20of%20Transonic%20Aeroelastic%20Stability%20and%20Limit%20Cycles&rft.jtitle=AIAA%20journal&rft.au=Woodgate,%20M.%20A&rft.date=2007-06-01&rft.volume=45&rft.issue=6&rft.spage=1370&rft.epage=1381&rft.pages=1370-1381&rft.issn=0001-1452&rft.eissn=1533-385X&rft.coden=AIAJAH&rft_id=info:doi/10.2514/1.25604&rft_dat=%3Cproquest_cross%3E29829359%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=215331619&rft_id=info:pmid/&rfr_iscdi=true |