Two-Dimensional Wind Tunnel and Computational Investigation of a Microtab Modified Airfoil

A computational and wind tunnel investigation into the effectiveness of a microtab-based aerodynamic load control system is presented. The microtab-based load control concept consists of a small tab, with a deployment height on the order of 1% of chord, which emerges approximately perpendicular to a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of aircraft 2007-03, Vol.44 (2), p.563-572
Hauptverfasser: Baker, J. P, Standish, K. J, van Dam, C. P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 572
container_issue 2
container_start_page 563
container_title Journal of aircraft
container_volume 44
creator Baker, J. P
Standish, K. J
van Dam, C. P
description A computational and wind tunnel investigation into the effectiveness of a microtab-based aerodynamic load control system is presented. The microtab-based load control concept consists of a small tab, with a deployment height on the order of 1% of chord, which emerges approximately perpendicular to a lifting surface in the vicinity of the trailing edge. Lift mitigation is achieved by deploying the tabs on the upper (suction) surface of a lifting surface. Similarly, lift enhancement can be attained by tab deployment on the lower (pressure) surface of a lifting surface. A sensitivity analysis using Reynolds-averaged Navier-Stokes methods was conducted to determine optimal sizing and positioning of the tabs for active load control at a chord Reynolds number of 1.0 x 106 for the S809 baseline airfoil. These numerical simulations provide insight into the flow phenomena that govern this promising load control system and guided tab placement during the wind tunnel study of the S809 airfoil. The numerical and experimental results are largely in agreement and demonstrate that aerodynamic load control through microtabs is viable. [PUBLICATION ABSTRACT]
doi_str_mv 10.2514/1.24502
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_2514_1_24502</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29958631</sourcerecordid><originalsourceid>FETCH-LOGICAL-a376t-9fd2fa66384644d74d55b9e18a0bfda70eaa76cdfe4441d7f4004ccc8652143b3</originalsourceid><addsrcrecordid>eNpt0FtLwzAUB_AgCs4pfoUiXvChM2nTJH0c8zZQfJkIvoSzJpGMrJlN6-XbG9eBMHxKQn6c_zkHoWOCR1lB6BUZZbTA2Q4akCLP01wwsYsGGGckFYyV--gghAXGWGDOB-h19unTa7vUdbC-Bpe82Fols66utUsgXid-uepaaPvfaf2hQ2vf1u_EmwSSR1s1voV58uiVNVarZGwb4607RHsGXNBHm3OInm9vZpP79OHpbjoZP6SQc9ampVGZAcZyQRmlilNVFPNSEwF4bhRwrAE4q5TRlFKiuKEY06qqBCsyQvN5PkTnfd1V49-72J5c2lBp56DWvgsyK8tCsJxEeLIFF75r4ljRYM4IJSWN6KJHcaoQGm3kqrFLaL4lwfJ3wZLI9YKjPNuUg1CBMw3UlQ1_XHBS0Ow39rJ3YAH-Ijdl5EoZaTrnWv3VRnv6r92K_gHZbpNP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>207614194</pqid></control><display><type>article</type><title>Two-Dimensional Wind Tunnel and Computational Investigation of a Microtab Modified Airfoil</title><source>Alma/SFX Local Collection</source><creator>Baker, J. P ; Standish, K. J ; van Dam, C. P</creator><creatorcontrib>Baker, J. P ; Standish, K. J ; van Dam, C. P</creatorcontrib><description>A computational and wind tunnel investigation into the effectiveness of a microtab-based aerodynamic load control system is presented. The microtab-based load control concept consists of a small tab, with a deployment height on the order of 1% of chord, which emerges approximately perpendicular to a lifting surface in the vicinity of the trailing edge. Lift mitigation is achieved by deploying the tabs on the upper (suction) surface of a lifting surface. Similarly, lift enhancement can be attained by tab deployment on the lower (pressure) surface of a lifting surface. A sensitivity analysis using Reynolds-averaged Navier-Stokes methods was conducted to determine optimal sizing and positioning of the tabs for active load control at a chord Reynolds number of 1.0 x 106 for the S809 baseline airfoil. These numerical simulations provide insight into the flow phenomena that govern this promising load control system and guided tab placement during the wind tunnel study of the S809 airfoil. The numerical and experimental results are largely in agreement and demonstrate that aerodynamic load control through microtabs is viable. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 0021-8669</identifier><identifier>EISSN: 1533-3868</identifier><identifier>DOI: 10.2514/1.24502</identifier><identifier>CODEN: JAIRAM</identifier><language>eng</language><publisher>Reston, VA: American Institute of Aeronautics and Astronautics</publisher><subject>Aerodynamics ; Aircraft ; Applied sciences ; Control systems ; Energy ; Exact sciences and technology ; Natural energy ; Numerical analysis ; Reynolds number ; Simulation ; Wind energy ; Wind tunnels</subject><ispartof>Journal of aircraft, 2007-03, Vol.44 (2), p.563-572</ispartof><rights>2007 INIST-CNRS</rights><rights>Copyright American Institute of Aeronautics and Astronautics Mar/Apr 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a376t-9fd2fa66384644d74d55b9e18a0bfda70eaa76cdfe4441d7f4004ccc8652143b3</citedby><cites>FETCH-LOGICAL-a376t-9fd2fa66384644d74d55b9e18a0bfda70eaa76cdfe4441d7f4004ccc8652143b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18715421$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Baker, J. P</creatorcontrib><creatorcontrib>Standish, K. J</creatorcontrib><creatorcontrib>van Dam, C. P</creatorcontrib><title>Two-Dimensional Wind Tunnel and Computational Investigation of a Microtab Modified Airfoil</title><title>Journal of aircraft</title><description>A computational and wind tunnel investigation into the effectiveness of a microtab-based aerodynamic load control system is presented. The microtab-based load control concept consists of a small tab, with a deployment height on the order of 1% of chord, which emerges approximately perpendicular to a lifting surface in the vicinity of the trailing edge. Lift mitigation is achieved by deploying the tabs on the upper (suction) surface of a lifting surface. Similarly, lift enhancement can be attained by tab deployment on the lower (pressure) surface of a lifting surface. A sensitivity analysis using Reynolds-averaged Navier-Stokes methods was conducted to determine optimal sizing and positioning of the tabs for active load control at a chord Reynolds number of 1.0 x 106 for the S809 baseline airfoil. These numerical simulations provide insight into the flow phenomena that govern this promising load control system and guided tab placement during the wind tunnel study of the S809 airfoil. The numerical and experimental results are largely in agreement and demonstrate that aerodynamic load control through microtabs is viable. [PUBLICATION ABSTRACT]</description><subject>Aerodynamics</subject><subject>Aircraft</subject><subject>Applied sciences</subject><subject>Control systems</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>Natural energy</subject><subject>Numerical analysis</subject><subject>Reynolds number</subject><subject>Simulation</subject><subject>Wind energy</subject><subject>Wind tunnels</subject><issn>0021-8669</issn><issn>1533-3868</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNpt0FtLwzAUB_AgCs4pfoUiXvChM2nTJH0c8zZQfJkIvoSzJpGMrJlN6-XbG9eBMHxKQn6c_zkHoWOCR1lB6BUZZbTA2Q4akCLP01wwsYsGGGckFYyV--gghAXGWGDOB-h19unTa7vUdbC-Bpe82Fols66utUsgXid-uepaaPvfaf2hQ2vf1u_EmwSSR1s1voV58uiVNVarZGwb4607RHsGXNBHm3OInm9vZpP79OHpbjoZP6SQc9ampVGZAcZyQRmlilNVFPNSEwF4bhRwrAE4q5TRlFKiuKEY06qqBCsyQvN5PkTnfd1V49-72J5c2lBp56DWvgsyK8tCsJxEeLIFF75r4ljRYM4IJSWN6KJHcaoQGm3kqrFLaL4lwfJ3wZLI9YKjPNuUg1CBMw3UlQ1_XHBS0Ow39rJ3YAH-Ijdl5EoZaTrnWv3VRnv6r92K_gHZbpNP</recordid><startdate>20070301</startdate><enddate>20070301</enddate><creator>Baker, J. P</creator><creator>Standish, K. J</creator><creator>van Dam, C. P</creator><general>American Institute of Aeronautics and Astronautics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>U9A</scope></search><sort><creationdate>20070301</creationdate><title>Two-Dimensional Wind Tunnel and Computational Investigation of a Microtab Modified Airfoil</title><author>Baker, J. P ; Standish, K. J ; van Dam, C. P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a376t-9fd2fa66384644d74d55b9e18a0bfda70eaa76cdfe4441d7f4004ccc8652143b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Aerodynamics</topic><topic>Aircraft</topic><topic>Applied sciences</topic><topic>Control systems</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>Natural energy</topic><topic>Numerical analysis</topic><topic>Reynolds number</topic><topic>Simulation</topic><topic>Wind energy</topic><topic>Wind tunnels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baker, J. P</creatorcontrib><creatorcontrib>Standish, K. J</creatorcontrib><creatorcontrib>van Dam, C. P</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of aircraft</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baker, J. P</au><au>Standish, K. J</au><au>van Dam, C. P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two-Dimensional Wind Tunnel and Computational Investigation of a Microtab Modified Airfoil</atitle><jtitle>Journal of aircraft</jtitle><date>2007-03-01</date><risdate>2007</risdate><volume>44</volume><issue>2</issue><spage>563</spage><epage>572</epage><pages>563-572</pages><issn>0021-8669</issn><eissn>1533-3868</eissn><coden>JAIRAM</coden><abstract>A computational and wind tunnel investigation into the effectiveness of a microtab-based aerodynamic load control system is presented. The microtab-based load control concept consists of a small tab, with a deployment height on the order of 1% of chord, which emerges approximately perpendicular to a lifting surface in the vicinity of the trailing edge. Lift mitigation is achieved by deploying the tabs on the upper (suction) surface of a lifting surface. Similarly, lift enhancement can be attained by tab deployment on the lower (pressure) surface of a lifting surface. A sensitivity analysis using Reynolds-averaged Navier-Stokes methods was conducted to determine optimal sizing and positioning of the tabs for active load control at a chord Reynolds number of 1.0 x 106 for the S809 baseline airfoil. These numerical simulations provide insight into the flow phenomena that govern this promising load control system and guided tab placement during the wind tunnel study of the S809 airfoil. The numerical and experimental results are largely in agreement and demonstrate that aerodynamic load control through microtabs is viable. [PUBLICATION ABSTRACT]</abstract><cop>Reston, VA</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/1.24502</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-8669
ispartof Journal of aircraft, 2007-03, Vol.44 (2), p.563-572
issn 0021-8669
1533-3868
language eng
recordid cdi_crossref_primary_10_2514_1_24502
source Alma/SFX Local Collection
subjects Aerodynamics
Aircraft
Applied sciences
Control systems
Energy
Exact sciences and technology
Natural energy
Numerical analysis
Reynolds number
Simulation
Wind energy
Wind tunnels
title Two-Dimensional Wind Tunnel and Computational Investigation of a Microtab Modified Airfoil
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T11%3A16%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two-Dimensional%20Wind%20Tunnel%20and%20Computational%20Investigation%20of%20a%20Microtab%20Modified%20Airfoil&rft.jtitle=Journal%20of%20aircraft&rft.au=Baker,%20J.%20P&rft.date=2007-03-01&rft.volume=44&rft.issue=2&rft.spage=563&rft.epage=572&rft.pages=563-572&rft.issn=0021-8669&rft.eissn=1533-3868&rft.coden=JAIRAM&rft_id=info:doi/10.2514/1.24502&rft_dat=%3Cproquest_cross%3E29958631%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=207614194&rft_id=info:pmid/&rfr_iscdi=true