The mixtilinear excircle vs the mixtilinear incircle
Many theorems concerning incircle of a random triangle can be transferred by analogy onto it's excircle. In the following paper we aim to show analogies between mixtilinear incircle and mixtilinear excircle by presenting variants of theorems proved in (Pater, Sochacki, 2020).
Gespeichert in:
Veröffentlicht in: | Annales Universitatis Paedagogicae Cracoviensis | Studia ad Didacticam Mathematicae Pertinentia 2022-12, Vol.14, p.13-24 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 24 |
---|---|
container_issue | |
container_start_page | 13 |
container_title | Annales Universitatis Paedagogicae Cracoviensis | Studia ad Didacticam Mathematicae Pertinentia |
container_volume | 14 |
creator | Pater, Mikołaj Sochacki, Robert |
description | Many theorems concerning incircle of a random triangle can be transferred by analogy onto it's excircle. In the following paper we aim to show analogies between mixtilinear incircle and mixtilinear excircle by presenting variants of theorems proved in (Pater, Sochacki, 2020). |
doi_str_mv | 10.24917/20809751.14.2 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_24917_20809751_14_2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_24917_20809751_14_2</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1492-b051fc2883d43484ccbf3f1b7944d75c91e060ce5752ad3fb13bd2b41b2584103</originalsourceid><addsrcrecordid>eNpdj01LAzEURYNYsNRuXc8fmPG9lxeTLKX4BQU3FboLk0yCgWmVpEj9945WN67uhXO5cIS4QuiILeprAgNWK-yQOzoTc2IFrWTcnk99Yu03vBDLWrOHaalRKTsXvHmNzS4fD3nM-9iXJh5DLmGMzUdtDv9Y3p_YpZilfqxx-ZsL8XJ_t1k9tuvnh6fV7boNyJZaDwpTIGPkwJINh-CTTOi1ZR60ChYj3ECISivqB5k8Sj-QZ_SkDCPIhehOv6G81Vpicu8l7_ry6RDcj7b703bIjuQXXm5Jeg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The mixtilinear excircle vs the mixtilinear incircle</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Pater, Mikołaj ; Sochacki, Robert</creator><creatorcontrib>Pater, Mikołaj ; Sochacki, Robert</creatorcontrib><description>Many theorems concerning incircle of a random triangle can be transferred by analogy onto it's excircle. In the following paper we aim to show analogies between mixtilinear incircle and mixtilinear excircle by presenting variants of theorems proved in (Pater, Sochacki, 2020).</description><identifier>ISSN: 2080-9751</identifier><identifier>EISSN: 2450-341X</identifier><identifier>DOI: 10.24917/20809751.14.2</identifier><language>eng</language><ispartof>Annales Universitatis Paedagogicae Cracoviensis | Studia ad Didacticam Mathematicae Pertinentia, 2022-12, Vol.14, p.13-24</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Pater, Mikołaj</creatorcontrib><creatorcontrib>Sochacki, Robert</creatorcontrib><title>The mixtilinear excircle vs the mixtilinear incircle</title><title>Annales Universitatis Paedagogicae Cracoviensis | Studia ad Didacticam Mathematicae Pertinentia</title><description>Many theorems concerning incircle of a random triangle can be transferred by analogy onto it's excircle. In the following paper we aim to show analogies between mixtilinear incircle and mixtilinear excircle by presenting variants of theorems proved in (Pater, Sochacki, 2020).</description><issn>2080-9751</issn><issn>2450-341X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpdj01LAzEURYNYsNRuXc8fmPG9lxeTLKX4BQU3FboLk0yCgWmVpEj9945WN67uhXO5cIS4QuiILeprAgNWK-yQOzoTc2IFrWTcnk99Yu03vBDLWrOHaalRKTsXvHmNzS4fD3nM-9iXJh5DLmGMzUdtDv9Y3p_YpZilfqxx-ZsL8XJ_t1k9tuvnh6fV7boNyJZaDwpTIGPkwJINh-CTTOi1ZR60ChYj3ECISivqB5k8Sj-QZ_SkDCPIhehOv6G81Vpicu8l7_ry6RDcj7b703bIjuQXXm5Jeg</recordid><startdate>20221231</startdate><enddate>20221231</enddate><creator>Pater, Mikołaj</creator><creator>Sochacki, Robert</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20221231</creationdate><title>The mixtilinear excircle vs the mixtilinear incircle</title><author>Pater, Mikołaj ; Sochacki, Robert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1492-b051fc2883d43484ccbf3f1b7944d75c91e060ce5752ad3fb13bd2b41b2584103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Pater, Mikołaj</creatorcontrib><creatorcontrib>Sochacki, Robert</creatorcontrib><collection>CrossRef</collection><jtitle>Annales Universitatis Paedagogicae Cracoviensis | Studia ad Didacticam Mathematicae Pertinentia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pater, Mikołaj</au><au>Sochacki, Robert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The mixtilinear excircle vs the mixtilinear incircle</atitle><jtitle>Annales Universitatis Paedagogicae Cracoviensis | Studia ad Didacticam Mathematicae Pertinentia</jtitle><date>2022-12-31</date><risdate>2022</risdate><volume>14</volume><spage>13</spage><epage>24</epage><pages>13-24</pages><issn>2080-9751</issn><eissn>2450-341X</eissn><abstract>Many theorems concerning incircle of a random triangle can be transferred by analogy onto it's excircle. In the following paper we aim to show analogies between mixtilinear incircle and mixtilinear excircle by presenting variants of theorems proved in (Pater, Sochacki, 2020).</abstract><doi>10.24917/20809751.14.2</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2080-9751 |
ispartof | Annales Universitatis Paedagogicae Cracoviensis | Studia ad Didacticam Mathematicae Pertinentia, 2022-12, Vol.14, p.13-24 |
issn | 2080-9751 2450-341X |
language | eng |
recordid | cdi_crossref_primary_10_24917_20809751_14_2 |
source | EZB-FREE-00999 freely available EZB journals |
title | The mixtilinear excircle vs the mixtilinear incircle |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T06%3A43%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20mixtilinear%20excircle%20vs%20the%20mixtilinear%20incircle&rft.jtitle=Annales%20Universitatis%20Paedagogicae%20Cracoviensis%20%7C%20Studia%20ad%20Didacticam%20Mathematicae%20Pertinentia&rft.au=Pater,%20Miko%C5%82aj&rft.date=2022-12-31&rft.volume=14&rft.spage=13&rft.epage=24&rft.pages=13-24&rft.issn=2080-9751&rft.eissn=2450-341X&rft_id=info:doi/10.24917/20809751.14.2&rft_dat=%3Ccrossref%3E10_24917_20809751_14_2%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |