The mixtilinear excircle vs the mixtilinear incircle

Many theorems concerning incircle of a random triangle can be transferred by analogy onto it's excircle. In the following paper we aim to show analogies between mixtilinear incircle and mixtilinear excircle by presenting variants of theorems proved in (Pater, Sochacki, 2020).

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annales Universitatis Paedagogicae Cracoviensis | Studia ad Didacticam Mathematicae Pertinentia 2022-12, Vol.14, p.13-24
Hauptverfasser: Pater, Mikołaj, Sochacki, Robert
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 24
container_issue
container_start_page 13
container_title Annales Universitatis Paedagogicae Cracoviensis | Studia ad Didacticam Mathematicae Pertinentia
container_volume 14
creator Pater, Mikołaj
Sochacki, Robert
description Many theorems concerning incircle of a random triangle can be transferred by analogy onto it's excircle. In the following paper we aim to show analogies between mixtilinear incircle and mixtilinear excircle by presenting variants of theorems proved in (Pater, Sochacki, 2020).
doi_str_mv 10.24917/20809751.14.2
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_24917_20809751_14_2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_24917_20809751_14_2</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1492-b051fc2883d43484ccbf3f1b7944d75c91e060ce5752ad3fb13bd2b41b2584103</originalsourceid><addsrcrecordid>eNpdj01LAzEURYNYsNRuXc8fmPG9lxeTLKX4BQU3FboLk0yCgWmVpEj9945WN67uhXO5cIS4QuiILeprAgNWK-yQOzoTc2IFrWTcnk99Yu03vBDLWrOHaalRKTsXvHmNzS4fD3nM-9iXJh5DLmGMzUdtDv9Y3p_YpZilfqxx-ZsL8XJ_t1k9tuvnh6fV7boNyJZaDwpTIGPkwJINh-CTTOi1ZR60ChYj3ECISivqB5k8Sj-QZ_SkDCPIhehOv6G81Vpicu8l7_ry6RDcj7b703bIjuQXXm5Jeg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The mixtilinear excircle vs the mixtilinear incircle</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Pater, Mikołaj ; Sochacki, Robert</creator><creatorcontrib>Pater, Mikołaj ; Sochacki, Robert</creatorcontrib><description>Many theorems concerning incircle of a random triangle can be transferred by analogy onto it's excircle. In the following paper we aim to show analogies between mixtilinear incircle and mixtilinear excircle by presenting variants of theorems proved in (Pater, Sochacki, 2020).</description><identifier>ISSN: 2080-9751</identifier><identifier>EISSN: 2450-341X</identifier><identifier>DOI: 10.24917/20809751.14.2</identifier><language>eng</language><ispartof>Annales Universitatis Paedagogicae Cracoviensis | Studia ad Didacticam Mathematicae Pertinentia, 2022-12, Vol.14, p.13-24</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Pater, Mikołaj</creatorcontrib><creatorcontrib>Sochacki, Robert</creatorcontrib><title>The mixtilinear excircle vs the mixtilinear incircle</title><title>Annales Universitatis Paedagogicae Cracoviensis | Studia ad Didacticam Mathematicae Pertinentia</title><description>Many theorems concerning incircle of a random triangle can be transferred by analogy onto it's excircle. In the following paper we aim to show analogies between mixtilinear incircle and mixtilinear excircle by presenting variants of theorems proved in (Pater, Sochacki, 2020).</description><issn>2080-9751</issn><issn>2450-341X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpdj01LAzEURYNYsNRuXc8fmPG9lxeTLKX4BQU3FboLk0yCgWmVpEj9945WN67uhXO5cIS4QuiILeprAgNWK-yQOzoTc2IFrWTcnk99Yu03vBDLWrOHaalRKTsXvHmNzS4fD3nM-9iXJh5DLmGMzUdtDv9Y3p_YpZilfqxx-ZsL8XJ_t1k9tuvnh6fV7boNyJZaDwpTIGPkwJINh-CTTOi1ZR60ChYj3ECISivqB5k8Sj-QZ_SkDCPIhehOv6G81Vpicu8l7_ry6RDcj7b703bIjuQXXm5Jeg</recordid><startdate>20221231</startdate><enddate>20221231</enddate><creator>Pater, Mikołaj</creator><creator>Sochacki, Robert</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20221231</creationdate><title>The mixtilinear excircle vs the mixtilinear incircle</title><author>Pater, Mikołaj ; Sochacki, Robert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1492-b051fc2883d43484ccbf3f1b7944d75c91e060ce5752ad3fb13bd2b41b2584103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Pater, Mikołaj</creatorcontrib><creatorcontrib>Sochacki, Robert</creatorcontrib><collection>CrossRef</collection><jtitle>Annales Universitatis Paedagogicae Cracoviensis | Studia ad Didacticam Mathematicae Pertinentia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pater, Mikołaj</au><au>Sochacki, Robert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The mixtilinear excircle vs the mixtilinear incircle</atitle><jtitle>Annales Universitatis Paedagogicae Cracoviensis | Studia ad Didacticam Mathematicae Pertinentia</jtitle><date>2022-12-31</date><risdate>2022</risdate><volume>14</volume><spage>13</spage><epage>24</epage><pages>13-24</pages><issn>2080-9751</issn><eissn>2450-341X</eissn><abstract>Many theorems concerning incircle of a random triangle can be transferred by analogy onto it's excircle. In the following paper we aim to show analogies between mixtilinear incircle and mixtilinear excircle by presenting variants of theorems proved in (Pater, Sochacki, 2020).</abstract><doi>10.24917/20809751.14.2</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2080-9751
ispartof Annales Universitatis Paedagogicae Cracoviensis | Studia ad Didacticam Mathematicae Pertinentia, 2022-12, Vol.14, p.13-24
issn 2080-9751
2450-341X
language eng
recordid cdi_crossref_primary_10_24917_20809751_14_2
source EZB-FREE-00999 freely available EZB journals
title The mixtilinear excircle vs the mixtilinear incircle
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T06%3A43%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20mixtilinear%20excircle%20vs%20the%20mixtilinear%20incircle&rft.jtitle=Annales%20Universitatis%20Paedagogicae%20Cracoviensis%20%7C%20Studia%20ad%20Didacticam%20Mathematicae%20Pertinentia&rft.au=Pater,%20Miko%C5%82aj&rft.date=2022-12-31&rft.volume=14&rft.spage=13&rft.epage=24&rft.pages=13-24&rft.issn=2080-9751&rft.eissn=2450-341X&rft_id=info:doi/10.24917/20809751.14.2&rft_dat=%3Ccrossref%3E10_24917_20809751_14_2%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true