National Cancer Institute scientific production scientometric analysis

Scientometrics analyzes scientific publications through bibliometric and computational techniques, whereby productivity and impact indicators are generated. To propose a multidimensional methodology in order to obtain the scientometric profile of the National Cancer Institute (INCan), Mexico, and ra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Gaceta médica de México 2020-01, Vol.156 (1), p.4
Hauptverfasser: Ruiz-Coronel, Alí, Andrade, José Luis Jiménez, Carrillo-Calvet, Humberto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 4
container_title Gaceta médica de México
container_volume 156
creator Ruiz-Coronel, Alí
Andrade, José Luis Jiménez
Carrillo-Calvet, Humberto
description Scientometrics analyzes scientific publications through bibliometric and computational techniques, whereby productivity and impact indicators are generated. To propose a multidimensional methodology in order to obtain the scientometric profile of the National Cancer Institute (INCan), Mexico, and rank it with regard to other national health institutions. Using the LabSOM software and the ViBlioSOM methodology based on artificial neural networks, the INCan scientific production indexed in the Web of Science from 2007 to 2017 was analyzed. The multidimensional scientometric profile of the Institute was obtained and compared with that of other national health institutions. In terms of productivity, INCan ranks fourth among the 10 Mexican public health institutions indexed in the Web of Science; in the normalized impact ranking, it ranks sixth. Although out of 1323 articles 683 (51.62 %) did not receive citations, 11 articles classified as excellent (0.83 %) obtained 24 % of 11,932 citations and, consequently, INCan normalized impact rate showed a mean productivity higher than the world mean. Multidimensional analysis with the proposed neural network enables obtaining a more reliable and comprehensive absolute and relative institutional scientiometric profile than that derived from measuring isolated variables.
doi_str_mv 10.24875/GMM.M19000315
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_24875_GMM_M19000315</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>32026874</sourcerecordid><originalsourceid>FETCH-LOGICAL-c302t-ce0eee7c5a6966f22b54e943cf50c3e2cc6a175a6a541cc767f744797578a9453</originalsourceid><addsrcrecordid>eNo9kLtOw0AQRbcAkRBoKZF_wGH2bZcoIiFSDA3U1mYylhbFdrS7LvL3GPKoRrr3nikOY08c5kIVVr-sqmpe8RIAJNc3bArATS4LLifsPsYfAKENlHdsIgUIU1g1ZcsPl3zfuX22cB1SyNZdTD4NibKInrrkG4_ZIfS7Af-G57RvKYWxcCN5jD4-sNvG7SM9nu-MfS_fvhbv-eZztV68bnKUIFKOBERkUTtTGtMIsdWKSiWx0YCSBKJx3I6t04ojWmMbq5QtrbaFK5WWMzY__cXQxxioqQ_Bty4caw71v4R6lFBfJYzA8wk4DNuWdtf5xYD8BeVYWo8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>National Cancer Institute scientific production scientometric analysis</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Ruiz-Coronel, Alí ; Andrade, José Luis Jiménez ; Carrillo-Calvet, Humberto</creator><creatorcontrib>Ruiz-Coronel, Alí ; Andrade, José Luis Jiménez ; Carrillo-Calvet, Humberto</creatorcontrib><description>Scientometrics analyzes scientific publications through bibliometric and computational techniques, whereby productivity and impact indicators are generated. To propose a multidimensional methodology in order to obtain the scientometric profile of the National Cancer Institute (INCan), Mexico, and rank it with regard to other national health institutions. Using the LabSOM software and the ViBlioSOM methodology based on artificial neural networks, the INCan scientific production indexed in the Web of Science from 2007 to 2017 was analyzed. The multidimensional scientometric profile of the Institute was obtained and compared with that of other national health institutions. In terms of productivity, INCan ranks fourth among the 10 Mexican public health institutions indexed in the Web of Science; in the normalized impact ranking, it ranks sixth. Although out of 1323 articles 683 (51.62 %) did not receive citations, 11 articles classified as excellent (0.83 %) obtained 24 % of 11,932 citations and, consequently, INCan normalized impact rate showed a mean productivity higher than the world mean. Multidimensional analysis with the proposed neural network enables obtaining a more reliable and comprehensive absolute and relative institutional scientiometric profile than that derived from measuring isolated variables.</description><identifier>ISSN: 0016-3813</identifier><identifier>DOI: 10.24875/GMM.M19000315</identifier><identifier>PMID: 32026874</identifier><language>eng</language><publisher>Mexico</publisher><subject>Abstracting and Indexing - statistics &amp; numerical data ; Academies and Institutes - classification ; Academies and Institutes - statistics &amp; numerical data ; Bibliometrics ; Biomedical Research - statistics &amp; numerical data ; Efficiency, Organizational - statistics &amp; numerical data ; Medical Oncology - statistics &amp; numerical data ; Mexico ; Neural Networks, Computer</subject><ispartof>Gaceta médica de México, 2020-01, Vol.156 (1), p.4</ispartof><rights>Copyright: © 2019 Permanyer.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c302t-ce0eee7c5a6966f22b54e943cf50c3e2cc6a175a6a541cc767f744797578a9453</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32026874$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ruiz-Coronel, Alí</creatorcontrib><creatorcontrib>Andrade, José Luis Jiménez</creatorcontrib><creatorcontrib>Carrillo-Calvet, Humberto</creatorcontrib><title>National Cancer Institute scientific production scientometric analysis</title><title>Gaceta médica de México</title><addtitle>Gac Med Mex</addtitle><description>Scientometrics analyzes scientific publications through bibliometric and computational techniques, whereby productivity and impact indicators are generated. To propose a multidimensional methodology in order to obtain the scientometric profile of the National Cancer Institute (INCan), Mexico, and rank it with regard to other national health institutions. Using the LabSOM software and the ViBlioSOM methodology based on artificial neural networks, the INCan scientific production indexed in the Web of Science from 2007 to 2017 was analyzed. The multidimensional scientometric profile of the Institute was obtained and compared with that of other national health institutions. In terms of productivity, INCan ranks fourth among the 10 Mexican public health institutions indexed in the Web of Science; in the normalized impact ranking, it ranks sixth. Although out of 1323 articles 683 (51.62 %) did not receive citations, 11 articles classified as excellent (0.83 %) obtained 24 % of 11,932 citations and, consequently, INCan normalized impact rate showed a mean productivity higher than the world mean. Multidimensional analysis with the proposed neural network enables obtaining a more reliable and comprehensive absolute and relative institutional scientiometric profile than that derived from measuring isolated variables.</description><subject>Abstracting and Indexing - statistics &amp; numerical data</subject><subject>Academies and Institutes - classification</subject><subject>Academies and Institutes - statistics &amp; numerical data</subject><subject>Bibliometrics</subject><subject>Biomedical Research - statistics &amp; numerical data</subject><subject>Efficiency, Organizational - statistics &amp; numerical data</subject><subject>Medical Oncology - statistics &amp; numerical data</subject><subject>Mexico</subject><subject>Neural Networks, Computer</subject><issn>0016-3813</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kLtOw0AQRbcAkRBoKZF_wGH2bZcoIiFSDA3U1mYylhbFdrS7LvL3GPKoRrr3nikOY08c5kIVVr-sqmpe8RIAJNc3bArATS4LLifsPsYfAKENlHdsIgUIU1g1ZcsPl3zfuX22cB1SyNZdTD4NibKInrrkG4_ZIfS7Af-G57RvKYWxcCN5jD4-sNvG7SM9nu-MfS_fvhbv-eZztV68bnKUIFKOBERkUTtTGtMIsdWKSiWx0YCSBKJx3I6t04ojWmMbq5QtrbaFK5WWMzY__cXQxxioqQ_Bty4caw71v4R6lFBfJYzA8wk4DNuWdtf5xYD8BeVYWo8</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Ruiz-Coronel, Alí</creator><creator>Andrade, José Luis Jiménez</creator><creator>Carrillo-Calvet, Humberto</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200101</creationdate><title>National Cancer Institute scientific production scientometric analysis</title><author>Ruiz-Coronel, Alí ; Andrade, José Luis Jiménez ; Carrillo-Calvet, Humberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c302t-ce0eee7c5a6966f22b54e943cf50c3e2cc6a175a6a541cc767f744797578a9453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Abstracting and Indexing - statistics &amp; numerical data</topic><topic>Academies and Institutes - classification</topic><topic>Academies and Institutes - statistics &amp; numerical data</topic><topic>Bibliometrics</topic><topic>Biomedical Research - statistics &amp; numerical data</topic><topic>Efficiency, Organizational - statistics &amp; numerical data</topic><topic>Medical Oncology - statistics &amp; numerical data</topic><topic>Mexico</topic><topic>Neural Networks, Computer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ruiz-Coronel, Alí</creatorcontrib><creatorcontrib>Andrade, José Luis Jiménez</creatorcontrib><creatorcontrib>Carrillo-Calvet, Humberto</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Gaceta médica de México</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ruiz-Coronel, Alí</au><au>Andrade, José Luis Jiménez</au><au>Carrillo-Calvet, Humberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>National Cancer Institute scientific production scientometric analysis</atitle><jtitle>Gaceta médica de México</jtitle><addtitle>Gac Med Mex</addtitle><date>2020-01-01</date><risdate>2020</risdate><volume>156</volume><issue>1</issue><spage>4</spage><pages>4-</pages><issn>0016-3813</issn><abstract>Scientometrics analyzes scientific publications through bibliometric and computational techniques, whereby productivity and impact indicators are generated. To propose a multidimensional methodology in order to obtain the scientometric profile of the National Cancer Institute (INCan), Mexico, and rank it with regard to other national health institutions. Using the LabSOM software and the ViBlioSOM methodology based on artificial neural networks, the INCan scientific production indexed in the Web of Science from 2007 to 2017 was analyzed. The multidimensional scientometric profile of the Institute was obtained and compared with that of other national health institutions. In terms of productivity, INCan ranks fourth among the 10 Mexican public health institutions indexed in the Web of Science; in the normalized impact ranking, it ranks sixth. Although out of 1323 articles 683 (51.62 %) did not receive citations, 11 articles classified as excellent (0.83 %) obtained 24 % of 11,932 citations and, consequently, INCan normalized impact rate showed a mean productivity higher than the world mean. Multidimensional analysis with the proposed neural network enables obtaining a more reliable and comprehensive absolute and relative institutional scientiometric profile than that derived from measuring isolated variables.</abstract><cop>Mexico</cop><pmid>32026874</pmid><doi>10.24875/GMM.M19000315</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0016-3813
ispartof Gaceta médica de México, 2020-01, Vol.156 (1), p.4
issn 0016-3813
language eng
recordid cdi_crossref_primary_10_24875_GMM_M19000315
source MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Abstracting and Indexing - statistics & numerical data
Academies and Institutes - classification
Academies and Institutes - statistics & numerical data
Bibliometrics
Biomedical Research - statistics & numerical data
Efficiency, Organizational - statistics & numerical data
Medical Oncology - statistics & numerical data
Mexico
Neural Networks, Computer
title National Cancer Institute scientific production scientometric analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T06%3A32%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=National%20Cancer%20Institute%20scientific%20production%20scientometric%20analysis&rft.jtitle=Gaceta%20m%C3%A9dica%20de%20M%C3%A9xico&rft.au=Ruiz-Coronel,%20Al%C3%AD&rft.date=2020-01-01&rft.volume=156&rft.issue=1&rft.spage=4&rft.pages=4-&rft.issn=0016-3813&rft_id=info:doi/10.24875/GMM.M19000315&rft_dat=%3Cpubmed_cross%3E32026874%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/32026874&rfr_iscdi=true