On the Construction of Short Addition-Subtraction Chains and their Applications

The problem of computing effciently, such that and are known to be very interesting, specially when is very large. In order to find effcient methods to solve this problem, addition chains have been much studied, and generalized to addition-subtraction chains. These various chains have been useful in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Tatra Mountains Mathematical Publications 2023-02, Vol.83 (1), p.131-144
Hauptverfasser: Ngom, Moussa, Tall, Amadou
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 144
container_issue 1
container_start_page 131
container_title Tatra Mountains Mathematical Publications
container_volume 83
creator Ngom, Moussa
Tall, Amadou
description The problem of computing effciently, such that and are known to be very interesting, specially when is very large. In order to find effcient methods to solve this problem, addition chains have been much studied, and generalized to addition-subtraction chains. These various chains have been useful in finding effcient exponentiation algorithms. In this paper, we present a new method to recover all existing exponentiation algorithms. It will be applied to design a new fast exponentiation method.
doi_str_mv 10.2478/tmmp-2023-0010
format Article
fullrecord <record><control><sourceid>walterdegruyter_cross</sourceid><recordid>TN_cdi_crossref_primary_10_2478_tmmp_2023_0010</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_2478_tmmp_2023_0010831131</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2021-94b01f2576b2c613b7c0af280aad8586fe84ad410bbd7590a75a5701489143843</originalsourceid><addsrcrecordid>eNp1kD1rwzAQhkVpoSHN2ll_QKlOki0ZugTTLwh4SDsL2bJrlcQ2kkzJv69FOnTpdMe9PMfLg9A90C0TUj3E02kijDJOKAV6hVbAuSKFzOj1n_0WbUJwNQUmuGRQrFBVDTj2LS7HIUQ_N9GNAx47fOhHH_HOWpcu5DDX0ZtLWvbGDQGbwSbSebybpqNrTArDHbrpzDG0m9-5Rh_PT-_lK9lXL2_lbk-apSSQQiwlOpbJvGZNDryWDTUdU9QYqzKVd60SxgqgdW1lVlAjM5NJCkIVILgSfI22l7-NH0Pwbacn707GnzVQnYzoZEQnIzoZWYDHC_BtjrH1tv3083lZ9Nc4-2Gp-g-oOAAH_gMNO2f_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the Construction of Short Addition-Subtraction Chains and their Applications</title><source>De Gruyter Open Access Journals</source><creator>Ngom, Moussa ; Tall, Amadou</creator><creatorcontrib>Ngom, Moussa ; Tall, Amadou</creatorcontrib><description>The problem of computing effciently, such that and are known to be very interesting, specially when is very large. In order to find effcient methods to solve this problem, addition chains have been much studied, and generalized to addition-subtraction chains. These various chains have been useful in finding effcient exponentiation algorithms. In this paper, we present a new method to recover all existing exponentiation algorithms. It will be applied to design a new fast exponentiation method.</description><identifier>ISSN: 1338-9750</identifier><identifier>EISSN: 1338-9750</identifier><identifier>DOI: 10.2478/tmmp-2023-0010</identifier><language>eng</language><publisher>Sciendo</publisher><subject>addition-subtraction chains ; Euclidean algorithm ; generalized continued fractions ; minimal length of chain ; non-adjacent form ; strategy</subject><ispartof>Tatra Mountains Mathematical Publications, 2023-02, Vol.83 (1), p.131-144</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2021-94b01f2576b2c613b7c0af280aad8586fe84ad410bbd7590a75a5701489143843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://sciendo.com/pdf/10.2478/tmmp-2023-0010$$EPDF$$P50$$Gwalterdegruyter$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://sciendo.com/article/10.2478/tmmp-2023-0010$$EHTML$$P50$$Gwalterdegruyter$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27922,27923,75934,75935</link.rule.ids></links><search><creatorcontrib>Ngom, Moussa</creatorcontrib><creatorcontrib>Tall, Amadou</creatorcontrib><title>On the Construction of Short Addition-Subtraction Chains and their Applications</title><title>Tatra Mountains Mathematical Publications</title><description>The problem of computing effciently, such that and are known to be very interesting, specially when is very large. In order to find effcient methods to solve this problem, addition chains have been much studied, and generalized to addition-subtraction chains. These various chains have been useful in finding effcient exponentiation algorithms. In this paper, we present a new method to recover all existing exponentiation algorithms. It will be applied to design a new fast exponentiation method.</description><subject>addition-subtraction chains</subject><subject>Euclidean algorithm</subject><subject>generalized continued fractions</subject><subject>minimal length of chain</subject><subject>non-adjacent form</subject><subject>strategy</subject><issn>1338-9750</issn><issn>1338-9750</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kD1rwzAQhkVpoSHN2ll_QKlOki0ZugTTLwh4SDsL2bJrlcQ2kkzJv69FOnTpdMe9PMfLg9A90C0TUj3E02kijDJOKAV6hVbAuSKFzOj1n_0WbUJwNQUmuGRQrFBVDTj2LS7HIUQ_N9GNAx47fOhHH_HOWpcu5DDX0ZtLWvbGDQGbwSbSebybpqNrTArDHbrpzDG0m9-5Rh_PT-_lK9lXL2_lbk-apSSQQiwlOpbJvGZNDryWDTUdU9QYqzKVd60SxgqgdW1lVlAjM5NJCkIVILgSfI22l7-NH0Pwbacn707GnzVQnYzoZEQnIzoZWYDHC_BtjrH1tv3083lZ9Nc4-2Gp-g-oOAAH_gMNO2f_</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Ngom, Moussa</creator><creator>Tall, Amadou</creator><general>Sciendo</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230201</creationdate><title>On the Construction of Short Addition-Subtraction Chains and their Applications</title><author>Ngom, Moussa ; Tall, Amadou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2021-94b01f2576b2c613b7c0af280aad8586fe84ad410bbd7590a75a5701489143843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>addition-subtraction chains</topic><topic>Euclidean algorithm</topic><topic>generalized continued fractions</topic><topic>minimal length of chain</topic><topic>non-adjacent form</topic><topic>strategy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ngom, Moussa</creatorcontrib><creatorcontrib>Tall, Amadou</creatorcontrib><collection>CrossRef</collection><jtitle>Tatra Mountains Mathematical Publications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ngom, Moussa</au><au>Tall, Amadou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Construction of Short Addition-Subtraction Chains and their Applications</atitle><jtitle>Tatra Mountains Mathematical Publications</jtitle><date>2023-02-01</date><risdate>2023</risdate><volume>83</volume><issue>1</issue><spage>131</spage><epage>144</epage><pages>131-144</pages><issn>1338-9750</issn><eissn>1338-9750</eissn><abstract>The problem of computing effciently, such that and are known to be very interesting, specially when is very large. In order to find effcient methods to solve this problem, addition chains have been much studied, and generalized to addition-subtraction chains. These various chains have been useful in finding effcient exponentiation algorithms. In this paper, we present a new method to recover all existing exponentiation algorithms. It will be applied to design a new fast exponentiation method.</abstract><pub>Sciendo</pub><doi>10.2478/tmmp-2023-0010</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1338-9750
ispartof Tatra Mountains Mathematical Publications, 2023-02, Vol.83 (1), p.131-144
issn 1338-9750
1338-9750
language eng
recordid cdi_crossref_primary_10_2478_tmmp_2023_0010
source De Gruyter Open Access Journals
subjects addition-subtraction chains
Euclidean algorithm
generalized continued fractions
minimal length of chain
non-adjacent form
strategy
title On the Construction of Short Addition-Subtraction Chains and their Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T06%3A51%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-walterdegruyter_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Construction%20of%20Short%20Addition-Subtraction%20Chains%20and%20their%20Applications&rft.jtitle=Tatra%20Mountains%20Mathematical%20Publications&rft.au=Ngom,%20Moussa&rft.date=2023-02-01&rft.volume=83&rft.issue=1&rft.spage=131&rft.epage=144&rft.pages=131-144&rft.issn=1338-9750&rft.eissn=1338-9750&rft_id=info:doi/10.2478/tmmp-2023-0010&rft_dat=%3Cwalterdegruyter_cross%3E10_2478_tmmp_2023_0010831131%3C/walterdegruyter_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true