Housing Price Prediction - Machine Learning and Geostatistical Methods
Machine learning algorithms are increasingly often used to predict real estate prices because they generate more accurate results than conventional statistical or geostatistical methods. This study proposes a methodology for incorporating information about the spatial distribution of residuals, esti...
Gespeichert in:
Veröffentlicht in: | Real estate management and valuation 2024-10 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | Real estate management and valuation |
container_volume | |
creator | Cellmer, Radosław Kobylińska, Katarzyna |
description | Machine learning algorithms are increasingly often used to predict real estate prices because they generate more accurate results than conventional statistical or geostatistical methods. This study proposes a methodology for incorporating information about the spatial distribution of residuals, estimated by kriging, into selected machine learning algorithms. The analysis was based on apartment prices quoted in the Polish capital of Warsaw. The study demonstrated that machine learning combined with geostatistical methods significantly improves the accuracy of housing price predictions. Local factors that influence housing prices can be directly incorporated into the model with the use of dedicated maps. |
doi_str_mv | 10.2478/remav-2025-0001 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_2478_remav_2025_0001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_2478_remav_2025_0001</sourcerecordid><originalsourceid>FETCH-LOGICAL-c166t-286eb7cb213217b7815449c5b86937e53d7125b4618146149333af63b0d364903</originalsourceid><addsrcrecordid>eNpNkE9LAzEUxIMoWGrPXvMFYpO8_NujFNsKW_Sg55BkszbS7koSBb-9Xe3By8w7DMO8H0K3jN5xoc0yx6P7IpxySSil7ALNOFBKJDfN5b_7Gi1KeZ8SUmiQcobW2_GzpOENP-cU4kljl0JN44AJ3rmwT0PEbXR5mDJu6PAmjqW6mkpNwR3wLtb92JUbdNW7Q4mLs8_R6_rhZbUl7dPmcXXfksCUqoQbFb0OnjPgTHttTjtEE6Q3qgEdJXSacemFYoadRDQA4HoFnnagRENhjpZ_vSGPpeTY24-cji5_W0btRML-krATCTv9CT8y41Ab</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Housing Price Prediction - Machine Learning and Geostatistical Methods</title><source>DOAJ Directory of Open Access Journals</source><source>Walter De Gruyter: Open Access Journals</source><creator>Cellmer, Radosław ; Kobylińska, Katarzyna</creator><creatorcontrib>Cellmer, Radosław ; Kobylińska, Katarzyna</creatorcontrib><description>Machine learning algorithms are increasingly often used to predict real estate prices because they generate more accurate results than conventional statistical or geostatistical methods. This study proposes a methodology for incorporating information about the spatial distribution of residuals, estimated by kriging, into selected machine learning algorithms. The analysis was based on apartment prices quoted in the Polish capital of Warsaw. The study demonstrated that machine learning combined with geostatistical methods significantly improves the accuracy of housing price predictions. Local factors that influence housing prices can be directly incorporated into the model with the use of dedicated maps.</description><identifier>ISSN: 2300-5289</identifier><identifier>EISSN: 2300-5289</identifier><identifier>DOI: 10.2478/remav-2025-0001</identifier><language>eng</language><ispartof>Real estate management and valuation, 2024-10</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c166t-286eb7cb213217b7815449c5b86937e53d7125b4618146149333af63b0d364903</cites><orcidid>0000-0001-6183-3215 ; 0000-0002-1096-8352</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids></links><search><creatorcontrib>Cellmer, Radosław</creatorcontrib><creatorcontrib>Kobylińska, Katarzyna</creatorcontrib><title>Housing Price Prediction - Machine Learning and Geostatistical Methods</title><title>Real estate management and valuation</title><description>Machine learning algorithms are increasingly often used to predict real estate prices because they generate more accurate results than conventional statistical or geostatistical methods. This study proposes a methodology for incorporating information about the spatial distribution of residuals, estimated by kriging, into selected machine learning algorithms. The analysis was based on apartment prices quoted in the Polish capital of Warsaw. The study demonstrated that machine learning combined with geostatistical methods significantly improves the accuracy of housing price predictions. Local factors that influence housing prices can be directly incorporated into the model with the use of dedicated maps.</description><issn>2300-5289</issn><issn>2300-5289</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkE9LAzEUxIMoWGrPXvMFYpO8_NujFNsKW_Sg55BkszbS7koSBb-9Xe3By8w7DMO8H0K3jN5xoc0yx6P7IpxySSil7ALNOFBKJDfN5b_7Gi1KeZ8SUmiQcobW2_GzpOENP-cU4kljl0JN44AJ3rmwT0PEbXR5mDJu6PAmjqW6mkpNwR3wLtb92JUbdNW7Q4mLs8_R6_rhZbUl7dPmcXXfksCUqoQbFb0OnjPgTHttTjtEE6Q3qgEdJXSacemFYoadRDQA4HoFnnagRENhjpZ_vSGPpeTY24-cji5_W0btRML-krATCTv9CT8y41Ab</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Cellmer, Radosław</creator><creator>Kobylińska, Katarzyna</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6183-3215</orcidid><orcidid>https://orcid.org/0000-0002-1096-8352</orcidid></search><sort><creationdate>20241001</creationdate><title>Housing Price Prediction - Machine Learning and Geostatistical Methods</title><author>Cellmer, Radosław ; Kobylińska, Katarzyna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c166t-286eb7cb213217b7815449c5b86937e53d7125b4618146149333af63b0d364903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cellmer, Radosław</creatorcontrib><creatorcontrib>Kobylińska, Katarzyna</creatorcontrib><collection>CrossRef</collection><jtitle>Real estate management and valuation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cellmer, Radosław</au><au>Kobylińska, Katarzyna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Housing Price Prediction - Machine Learning and Geostatistical Methods</atitle><jtitle>Real estate management and valuation</jtitle><date>2024-10-01</date><risdate>2024</risdate><issn>2300-5289</issn><eissn>2300-5289</eissn><abstract>Machine learning algorithms are increasingly often used to predict real estate prices because they generate more accurate results than conventional statistical or geostatistical methods. This study proposes a methodology for incorporating information about the spatial distribution of residuals, estimated by kriging, into selected machine learning algorithms. The analysis was based on apartment prices quoted in the Polish capital of Warsaw. The study demonstrated that machine learning combined with geostatistical methods significantly improves the accuracy of housing price predictions. Local factors that influence housing prices can be directly incorporated into the model with the use of dedicated maps.</abstract><doi>10.2478/remav-2025-0001</doi><orcidid>https://orcid.org/0000-0001-6183-3215</orcidid><orcidid>https://orcid.org/0000-0002-1096-8352</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2300-5289 |
ispartof | Real estate management and valuation, 2024-10 |
issn | 2300-5289 2300-5289 |
language | eng |
recordid | cdi_crossref_primary_10_2478_remav_2025_0001 |
source | DOAJ Directory of Open Access Journals; Walter De Gruyter: Open Access Journals |
title | Housing Price Prediction - Machine Learning and Geostatistical Methods |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T04%3A11%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Housing%20Price%20Prediction%20-%20Machine%20Learning%20and%20Geostatistical%20Methods&rft.jtitle=Real%20estate%20management%20and%20valuation&rft.au=Cellmer,%20Rados%C5%82aw&rft.date=2024-10-01&rft.issn=2300-5289&rft.eissn=2300-5289&rft_id=info:doi/10.2478/remav-2025-0001&rft_dat=%3Ccrossref%3E10_2478_remav_2025_0001%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |