Housing Price Prediction - Machine Learning and Geostatistical Methods

Machine learning algorithms are increasingly often used to predict real estate prices because they generate more accurate results than conventional statistical or geostatistical methods. This study proposes a methodology for incorporating information about the spatial distribution of residuals, esti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Real estate management and valuation 2024-10
Hauptverfasser: Cellmer, Radosław, Kobylińska, Katarzyna
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Real estate management and valuation
container_volume
creator Cellmer, Radosław
Kobylińska, Katarzyna
description Machine learning algorithms are increasingly often used to predict real estate prices because they generate more accurate results than conventional statistical or geostatistical methods. This study proposes a methodology for incorporating information about the spatial distribution of residuals, estimated by kriging, into selected machine learning algorithms. The analysis was based on apartment prices quoted in the Polish capital of Warsaw. The study demonstrated that machine learning combined with geostatistical methods significantly improves the accuracy of housing price predictions. Local factors that influence housing prices can be directly incorporated into the model with the use of dedicated maps.
doi_str_mv 10.2478/remav-2025-0001
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_2478_remav_2025_0001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_2478_remav_2025_0001</sourcerecordid><originalsourceid>FETCH-LOGICAL-c166t-286eb7cb213217b7815449c5b86937e53d7125b4618146149333af63b0d364903</originalsourceid><addsrcrecordid>eNpNkE9LAzEUxIMoWGrPXvMFYpO8_NujFNsKW_Sg55BkszbS7koSBb-9Xe3By8w7DMO8H0K3jN5xoc0yx6P7IpxySSil7ALNOFBKJDfN5b_7Gi1KeZ8SUmiQcobW2_GzpOENP-cU4kljl0JN44AJ3rmwT0PEbXR5mDJu6PAmjqW6mkpNwR3wLtb92JUbdNW7Q4mLs8_R6_rhZbUl7dPmcXXfksCUqoQbFb0OnjPgTHttTjtEE6Q3qgEdJXSacemFYoadRDQA4HoFnnagRENhjpZ_vSGPpeTY24-cji5_W0btRML-krATCTv9CT8y41Ab</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Housing Price Prediction - Machine Learning and Geostatistical Methods</title><source>DOAJ Directory of Open Access Journals</source><source>Walter De Gruyter: Open Access Journals</source><creator>Cellmer, Radosław ; Kobylińska, Katarzyna</creator><creatorcontrib>Cellmer, Radosław ; Kobylińska, Katarzyna</creatorcontrib><description>Machine learning algorithms are increasingly often used to predict real estate prices because they generate more accurate results than conventional statistical or geostatistical methods. This study proposes a methodology for incorporating information about the spatial distribution of residuals, estimated by kriging, into selected machine learning algorithms. The analysis was based on apartment prices quoted in the Polish capital of Warsaw. The study demonstrated that machine learning combined with geostatistical methods significantly improves the accuracy of housing price predictions. Local factors that influence housing prices can be directly incorporated into the model with the use of dedicated maps.</description><identifier>ISSN: 2300-5289</identifier><identifier>EISSN: 2300-5289</identifier><identifier>DOI: 10.2478/remav-2025-0001</identifier><language>eng</language><ispartof>Real estate management and valuation, 2024-10</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c166t-286eb7cb213217b7815449c5b86937e53d7125b4618146149333af63b0d364903</cites><orcidid>0000-0001-6183-3215 ; 0000-0002-1096-8352</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids></links><search><creatorcontrib>Cellmer, Radosław</creatorcontrib><creatorcontrib>Kobylińska, Katarzyna</creatorcontrib><title>Housing Price Prediction - Machine Learning and Geostatistical Methods</title><title>Real estate management and valuation</title><description>Machine learning algorithms are increasingly often used to predict real estate prices because they generate more accurate results than conventional statistical or geostatistical methods. This study proposes a methodology for incorporating information about the spatial distribution of residuals, estimated by kriging, into selected machine learning algorithms. The analysis was based on apartment prices quoted in the Polish capital of Warsaw. The study demonstrated that machine learning combined with geostatistical methods significantly improves the accuracy of housing price predictions. Local factors that influence housing prices can be directly incorporated into the model with the use of dedicated maps.</description><issn>2300-5289</issn><issn>2300-5289</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkE9LAzEUxIMoWGrPXvMFYpO8_NujFNsKW_Sg55BkszbS7koSBb-9Xe3By8w7DMO8H0K3jN5xoc0yx6P7IpxySSil7ALNOFBKJDfN5b_7Gi1KeZ8SUmiQcobW2_GzpOENP-cU4kljl0JN44AJ3rmwT0PEbXR5mDJu6PAmjqW6mkpNwR3wLtb92JUbdNW7Q4mLs8_R6_rhZbUl7dPmcXXfksCUqoQbFb0OnjPgTHttTjtEE6Q3qgEdJXSacemFYoadRDQA4HoFnnagRENhjpZ_vSGPpeTY24-cji5_W0btRML-krATCTv9CT8y41Ab</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Cellmer, Radosław</creator><creator>Kobylińska, Katarzyna</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6183-3215</orcidid><orcidid>https://orcid.org/0000-0002-1096-8352</orcidid></search><sort><creationdate>20241001</creationdate><title>Housing Price Prediction - Machine Learning and Geostatistical Methods</title><author>Cellmer, Radosław ; Kobylińska, Katarzyna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c166t-286eb7cb213217b7815449c5b86937e53d7125b4618146149333af63b0d364903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cellmer, Radosław</creatorcontrib><creatorcontrib>Kobylińska, Katarzyna</creatorcontrib><collection>CrossRef</collection><jtitle>Real estate management and valuation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cellmer, Radosław</au><au>Kobylińska, Katarzyna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Housing Price Prediction - Machine Learning and Geostatistical Methods</atitle><jtitle>Real estate management and valuation</jtitle><date>2024-10-01</date><risdate>2024</risdate><issn>2300-5289</issn><eissn>2300-5289</eissn><abstract>Machine learning algorithms are increasingly often used to predict real estate prices because they generate more accurate results than conventional statistical or geostatistical methods. This study proposes a methodology for incorporating information about the spatial distribution of residuals, estimated by kriging, into selected machine learning algorithms. The analysis was based on apartment prices quoted in the Polish capital of Warsaw. The study demonstrated that machine learning combined with geostatistical methods significantly improves the accuracy of housing price predictions. Local factors that influence housing prices can be directly incorporated into the model with the use of dedicated maps.</abstract><doi>10.2478/remav-2025-0001</doi><orcidid>https://orcid.org/0000-0001-6183-3215</orcidid><orcidid>https://orcid.org/0000-0002-1096-8352</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2300-5289
ispartof Real estate management and valuation, 2024-10
issn 2300-5289
2300-5289
language eng
recordid cdi_crossref_primary_10_2478_remav_2025_0001
source DOAJ Directory of Open Access Journals; Walter De Gruyter: Open Access Journals
title Housing Price Prediction - Machine Learning and Geostatistical Methods
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T04%3A11%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Housing%20Price%20Prediction%20-%20Machine%20Learning%20and%20Geostatistical%20Methods&rft.jtitle=Real%20estate%20management%20and%20valuation&rft.au=Cellmer,%20Rados%C5%82aw&rft.date=2024-10-01&rft.issn=2300-5289&rft.eissn=2300-5289&rft_id=info:doi/10.2478/remav-2025-0001&rft_dat=%3Ccrossref%3E10_2478_remav_2025_0001%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true