Urban Classification from Aerial and Satellite Images

When talking about land cover, we need to find a proper way to extract information from aerial or satellite images. In the field of photogrammetry, aerial images are generally acquired by optical sensors that deliver images in four bands (red, green, blue and near-infrared). Recent researches in thi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Applied Engineering Sciences 2020-12, Vol.10 (2), p.163-172
Hauptverfasser: Pârvu, Iuliana Maria, Picu, Iuliana Adriana Cuibac, Dragomir, P.I., Poli, Daniela
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 172
container_issue 2
container_start_page 163
container_title Journal of Applied Engineering Sciences
container_volume 10
creator Pârvu, Iuliana Maria
Picu, Iuliana Adriana Cuibac
Dragomir, P.I.
Poli, Daniela
description When talking about land cover, we need to find a proper way to extract information from aerial or satellite images. In the field of photogrammetry, aerial images are generally acquired by optical sensors that deliver images in four bands (red, green, blue and near-infrared). Recent researches in this field demonstrated that for the image classification process is still place for improvement. From satellites are obtained multispectral images with more bands (e.g. Landsat 7/8 has 36 spectral bands). This paper will present the differences between these two types of images and the classification results using support-vector machine and maximum likelihood classifier. For the aerial and the satellite images we used different sets of classification classes and the two methods mentioned above to highlight the importance of choosing the classes and the classification method.
doi_str_mv 10.2478/jaes-2020-0024
format Article
fullrecord <record><control><sourceid>walterdegruyter_cross</sourceid><recordid>TN_cdi_crossref_primary_10_2478_jaes_2020_0024</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_2478_jaes_2020_0024102163</sourcerecordid><originalsourceid>FETCH-LOGICAL-c262t-db962798456d9d42c7b40b96ba1665c75e6735ca65bb8c05c787fdf9a308abaf3</originalsourceid><addsrcrecordid>eNp1j8tqwzAQRUVpoSHNtmv_gNKRrIcF3YTQRyDQRZu1GMlSsHHsIjmU_H1t0m1Xc7lwLnMIeWSw5kJXTy2GTDlwoABc3JAF55Wgmhl9O2ehaamVuSernFsAYFoaY9SCyENy2BfbDnNuYuNxbIa-iGk4FZuQGuwK7OviE8fQdc0Yit0JjyE_kLuIXQ6rv7skh9eXr-073X-87babPfVc8ZHWziiuTSWkqk0tuNdOwNQ5ZEpJr2VQupQelXSu8jA1lY51NFhChQ5juSTr665PQ84pRPudmhOmi2VgZ287e9vZ287eE_B8BX6wG0OqwzGdL1Ow7XBO_fTqPyADzlRZ_gIu117w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Urban Classification from Aerial and Satellite Images</title><source>De Gruyter Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Pârvu, Iuliana Maria ; Picu, Iuliana Adriana Cuibac ; Dragomir, P.I. ; Poli, Daniela</creator><creatorcontrib>Pârvu, Iuliana Maria ; Picu, Iuliana Adriana Cuibac ; Dragomir, P.I. ; Poli, Daniela</creatorcontrib><description>When talking about land cover, we need to find a proper way to extract information from aerial or satellite images. In the field of photogrammetry, aerial images are generally acquired by optical sensors that deliver images in four bands (red, green, blue and near-infrared). Recent researches in this field demonstrated that for the image classification process is still place for improvement. From satellites are obtained multispectral images with more bands (e.g. Landsat 7/8 has 36 spectral bands). This paper will present the differences between these two types of images and the classification results using support-vector machine and maximum likelihood classifier. For the aerial and the satellite images we used different sets of classification classes and the two methods mentioned above to highlight the importance of choosing the classes and the classification method.</description><identifier>ISSN: 2247-3769</identifier><identifier>EISSN: 2284-7197</identifier><identifier>DOI: 10.2478/jaes-2020-0024</identifier><language>eng</language><publisher>Sciendo</publisher><subject>maximum likelihood classifier ; multispectral images ; photogrammetry ; support-vector machine</subject><ispartof>Journal of Applied Engineering Sciences, 2020-12, Vol.10 (2), p.163-172</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c262t-db962798456d9d42c7b40b96ba1665c75e6735ca65bb8c05c787fdf9a308abaf3</citedby><cites>FETCH-LOGICAL-c262t-db962798456d9d42c7b40b96ba1665c75e6735ca65bb8c05c787fdf9a308abaf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://sciendo.com/pdf/10.2478/jaes-2020-0024$$EPDF$$P50$$Gwalterdegruyter$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://sciendo.com/article/10.2478/jaes-2020-0024$$EHTML$$P50$$Gwalterdegruyter$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,27911,27912,75919,75920</link.rule.ids></links><search><creatorcontrib>Pârvu, Iuliana Maria</creatorcontrib><creatorcontrib>Picu, Iuliana Adriana Cuibac</creatorcontrib><creatorcontrib>Dragomir, P.I.</creatorcontrib><creatorcontrib>Poli, Daniela</creatorcontrib><title>Urban Classification from Aerial and Satellite Images</title><title>Journal of Applied Engineering Sciences</title><description>When talking about land cover, we need to find a proper way to extract information from aerial or satellite images. In the field of photogrammetry, aerial images are generally acquired by optical sensors that deliver images in four bands (red, green, blue and near-infrared). Recent researches in this field demonstrated that for the image classification process is still place for improvement. From satellites are obtained multispectral images with more bands (e.g. Landsat 7/8 has 36 spectral bands). This paper will present the differences between these two types of images and the classification results using support-vector machine and maximum likelihood classifier. For the aerial and the satellite images we used different sets of classification classes and the two methods mentioned above to highlight the importance of choosing the classes and the classification method.</description><subject>maximum likelihood classifier</subject><subject>multispectral images</subject><subject>photogrammetry</subject><subject>support-vector machine</subject><issn>2247-3769</issn><issn>2284-7197</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1j8tqwzAQRUVpoSHNtmv_gNKRrIcF3YTQRyDQRZu1GMlSsHHsIjmU_H1t0m1Xc7lwLnMIeWSw5kJXTy2GTDlwoABc3JAF55Wgmhl9O2ehaamVuSernFsAYFoaY9SCyENy2BfbDnNuYuNxbIa-iGk4FZuQGuwK7OviE8fQdc0Yit0JjyE_kLuIXQ6rv7skh9eXr-073X-87babPfVc8ZHWziiuTSWkqk0tuNdOwNQ5ZEpJr2VQupQelXSu8jA1lY51NFhChQ5juSTr665PQ84pRPudmhOmi2VgZ287e9vZ287eE_B8BX6wG0OqwzGdL1Ow7XBO_fTqPyADzlRZ_gIu117w</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Pârvu, Iuliana Maria</creator><creator>Picu, Iuliana Adriana Cuibac</creator><creator>Dragomir, P.I.</creator><creator>Poli, Daniela</creator><general>Sciendo</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20201201</creationdate><title>Urban Classification from Aerial and Satellite Images</title><author>Pârvu, Iuliana Maria ; Picu, Iuliana Adriana Cuibac ; Dragomir, P.I. ; Poli, Daniela</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c262t-db962798456d9d42c7b40b96ba1665c75e6735ca65bb8c05c787fdf9a308abaf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>maximum likelihood classifier</topic><topic>multispectral images</topic><topic>photogrammetry</topic><topic>support-vector machine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pârvu, Iuliana Maria</creatorcontrib><creatorcontrib>Picu, Iuliana Adriana Cuibac</creatorcontrib><creatorcontrib>Dragomir, P.I.</creatorcontrib><creatorcontrib>Poli, Daniela</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of Applied Engineering Sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pârvu, Iuliana Maria</au><au>Picu, Iuliana Adriana Cuibac</au><au>Dragomir, P.I.</au><au>Poli, Daniela</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Urban Classification from Aerial and Satellite Images</atitle><jtitle>Journal of Applied Engineering Sciences</jtitle><date>2020-12-01</date><risdate>2020</risdate><volume>10</volume><issue>2</issue><spage>163</spage><epage>172</epage><pages>163-172</pages><issn>2247-3769</issn><eissn>2284-7197</eissn><abstract>When talking about land cover, we need to find a proper way to extract information from aerial or satellite images. In the field of photogrammetry, aerial images are generally acquired by optical sensors that deliver images in four bands (red, green, blue and near-infrared). Recent researches in this field demonstrated that for the image classification process is still place for improvement. From satellites are obtained multispectral images with more bands (e.g. Landsat 7/8 has 36 spectral bands). This paper will present the differences between these two types of images and the classification results using support-vector machine and maximum likelihood classifier. For the aerial and the satellite images we used different sets of classification classes and the two methods mentioned above to highlight the importance of choosing the classes and the classification method.</abstract><pub>Sciendo</pub><doi>10.2478/jaes-2020-0024</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2247-3769
ispartof Journal of Applied Engineering Sciences, 2020-12, Vol.10 (2), p.163-172
issn 2247-3769
2284-7197
language eng
recordid cdi_crossref_primary_10_2478_jaes_2020_0024
source De Gruyter Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects maximum likelihood classifier
multispectral images
photogrammetry
support-vector machine
title Urban Classification from Aerial and Satellite Images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T19%3A44%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-walterdegruyter_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Urban%20Classification%20from%20Aerial%20and%20Satellite%20Images&rft.jtitle=Journal%20of%20Applied%20Engineering%20Sciences&rft.au=P%C3%A2rvu,%20Iuliana%20Maria&rft.date=2020-12-01&rft.volume=10&rft.issue=2&rft.spage=163&rft.epage=172&rft.pages=163-172&rft.issn=2247-3769&rft.eissn=2284-7197&rft_id=info:doi/10.2478/jaes-2020-0024&rft_dat=%3Cwalterdegruyter_cross%3E10_2478_jaes_2020_0024102163%3C/walterdegruyter_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true