Urban Classification from Aerial and Satellite Images
When talking about land cover, we need to find a proper way to extract information from aerial or satellite images. In the field of photogrammetry, aerial images are generally acquired by optical sensors that deliver images in four bands (red, green, blue and near-infrared). Recent researches in thi...
Gespeichert in:
Veröffentlicht in: | Journal of Applied Engineering Sciences 2020-12, Vol.10 (2), p.163-172 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 172 |
---|---|
container_issue | 2 |
container_start_page | 163 |
container_title | Journal of Applied Engineering Sciences |
container_volume | 10 |
creator | Pârvu, Iuliana Maria Picu, Iuliana Adriana Cuibac Dragomir, P.I. Poli, Daniela |
description | When talking about land cover, we need to find a proper way to extract information from aerial or satellite images. In the field of photogrammetry, aerial images are generally acquired by optical sensors that deliver images in four bands (red, green, blue and near-infrared). Recent researches in this field demonstrated that for the image classification process is still place for improvement. From satellites are obtained multispectral images with more bands (e.g. Landsat 7/8 has 36 spectral bands). This paper will present the differences between these two types of images and the classification results using support-vector machine and maximum likelihood classifier. For the aerial and the satellite images we used different sets of classification classes and the two methods mentioned above to highlight the importance of choosing the classes and the classification method. |
doi_str_mv | 10.2478/jaes-2020-0024 |
format | Article |
fullrecord | <record><control><sourceid>walterdegruyter_cross</sourceid><recordid>TN_cdi_crossref_primary_10_2478_jaes_2020_0024</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_2478_jaes_2020_0024102163</sourcerecordid><originalsourceid>FETCH-LOGICAL-c262t-db962798456d9d42c7b40b96ba1665c75e6735ca65bb8c05c787fdf9a308abaf3</originalsourceid><addsrcrecordid>eNp1j8tqwzAQRUVpoSHNtmv_gNKRrIcF3YTQRyDQRZu1GMlSsHHsIjmU_H1t0m1Xc7lwLnMIeWSw5kJXTy2GTDlwoABc3JAF55Wgmhl9O2ehaamVuSernFsAYFoaY9SCyENy2BfbDnNuYuNxbIa-iGk4FZuQGuwK7OviE8fQdc0Yit0JjyE_kLuIXQ6rv7skh9eXr-073X-87babPfVc8ZHWziiuTSWkqk0tuNdOwNQ5ZEpJr2VQupQelXSu8jA1lY51NFhChQ5juSTr665PQ84pRPudmhOmi2VgZ287e9vZ287eE_B8BX6wG0OqwzGdL1Ow7XBO_fTqPyADzlRZ_gIu117w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Urban Classification from Aerial and Satellite Images</title><source>De Gruyter Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Pârvu, Iuliana Maria ; Picu, Iuliana Adriana Cuibac ; Dragomir, P.I. ; Poli, Daniela</creator><creatorcontrib>Pârvu, Iuliana Maria ; Picu, Iuliana Adriana Cuibac ; Dragomir, P.I. ; Poli, Daniela</creatorcontrib><description>When talking about land cover, we need to find a proper way to extract information from aerial or satellite images. In the field of photogrammetry, aerial images are generally acquired by optical sensors that deliver images in four bands (red, green, blue and near-infrared). Recent researches in this field demonstrated that for the image classification process is still place for improvement. From satellites are obtained multispectral images with more bands (e.g. Landsat 7/8 has 36 spectral bands). This paper will present the differences between these two types of images and the classification results using support-vector machine and maximum likelihood classifier. For the aerial and the satellite images we used different sets of classification classes and the two methods mentioned above to highlight the importance of choosing the classes and the classification method.</description><identifier>ISSN: 2247-3769</identifier><identifier>EISSN: 2284-7197</identifier><identifier>DOI: 10.2478/jaes-2020-0024</identifier><language>eng</language><publisher>Sciendo</publisher><subject>maximum likelihood classifier ; multispectral images ; photogrammetry ; support-vector machine</subject><ispartof>Journal of Applied Engineering Sciences, 2020-12, Vol.10 (2), p.163-172</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c262t-db962798456d9d42c7b40b96ba1665c75e6735ca65bb8c05c787fdf9a308abaf3</citedby><cites>FETCH-LOGICAL-c262t-db962798456d9d42c7b40b96ba1665c75e6735ca65bb8c05c787fdf9a308abaf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://sciendo.com/pdf/10.2478/jaes-2020-0024$$EPDF$$P50$$Gwalterdegruyter$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://sciendo.com/article/10.2478/jaes-2020-0024$$EHTML$$P50$$Gwalterdegruyter$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,27911,27912,75919,75920</link.rule.ids></links><search><creatorcontrib>Pârvu, Iuliana Maria</creatorcontrib><creatorcontrib>Picu, Iuliana Adriana Cuibac</creatorcontrib><creatorcontrib>Dragomir, P.I.</creatorcontrib><creatorcontrib>Poli, Daniela</creatorcontrib><title>Urban Classification from Aerial and Satellite Images</title><title>Journal of Applied Engineering Sciences</title><description>When talking about land cover, we need to find a proper way to extract information from aerial or satellite images. In the field of photogrammetry, aerial images are generally acquired by optical sensors that deliver images in four bands (red, green, blue and near-infrared). Recent researches in this field demonstrated that for the image classification process is still place for improvement. From satellites are obtained multispectral images with more bands (e.g. Landsat 7/8 has 36 spectral bands). This paper will present the differences between these two types of images and the classification results using support-vector machine and maximum likelihood classifier. For the aerial and the satellite images we used different sets of classification classes and the two methods mentioned above to highlight the importance of choosing the classes and the classification method.</description><subject>maximum likelihood classifier</subject><subject>multispectral images</subject><subject>photogrammetry</subject><subject>support-vector machine</subject><issn>2247-3769</issn><issn>2284-7197</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1j8tqwzAQRUVpoSHNtmv_gNKRrIcF3YTQRyDQRZu1GMlSsHHsIjmU_H1t0m1Xc7lwLnMIeWSw5kJXTy2GTDlwoABc3JAF55Wgmhl9O2ehaamVuSernFsAYFoaY9SCyENy2BfbDnNuYuNxbIa-iGk4FZuQGuwK7OviE8fQdc0Yit0JjyE_kLuIXQ6rv7skh9eXr-073X-87babPfVc8ZHWziiuTSWkqk0tuNdOwNQ5ZEpJr2VQupQelXSu8jA1lY51NFhChQ5juSTr665PQ84pRPudmhOmi2VgZ287e9vZ287eE_B8BX6wG0OqwzGdL1Ow7XBO_fTqPyADzlRZ_gIu117w</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Pârvu, Iuliana Maria</creator><creator>Picu, Iuliana Adriana Cuibac</creator><creator>Dragomir, P.I.</creator><creator>Poli, Daniela</creator><general>Sciendo</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20201201</creationdate><title>Urban Classification from Aerial and Satellite Images</title><author>Pârvu, Iuliana Maria ; Picu, Iuliana Adriana Cuibac ; Dragomir, P.I. ; Poli, Daniela</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c262t-db962798456d9d42c7b40b96ba1665c75e6735ca65bb8c05c787fdf9a308abaf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>maximum likelihood classifier</topic><topic>multispectral images</topic><topic>photogrammetry</topic><topic>support-vector machine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pârvu, Iuliana Maria</creatorcontrib><creatorcontrib>Picu, Iuliana Adriana Cuibac</creatorcontrib><creatorcontrib>Dragomir, P.I.</creatorcontrib><creatorcontrib>Poli, Daniela</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of Applied Engineering Sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pârvu, Iuliana Maria</au><au>Picu, Iuliana Adriana Cuibac</au><au>Dragomir, P.I.</au><au>Poli, Daniela</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Urban Classification from Aerial and Satellite Images</atitle><jtitle>Journal of Applied Engineering Sciences</jtitle><date>2020-12-01</date><risdate>2020</risdate><volume>10</volume><issue>2</issue><spage>163</spage><epage>172</epage><pages>163-172</pages><issn>2247-3769</issn><eissn>2284-7197</eissn><abstract>When talking about land cover, we need to find a proper way to extract information from aerial or satellite images. In the field of photogrammetry, aerial images are generally acquired by optical sensors that deliver images in four bands (red, green, blue and near-infrared). Recent researches in this field demonstrated that for the image classification process is still place for improvement. From satellites are obtained multispectral images with more bands (e.g. Landsat 7/8 has 36 spectral bands). This paper will present the differences between these two types of images and the classification results using support-vector machine and maximum likelihood classifier. For the aerial and the satellite images we used different sets of classification classes and the two methods mentioned above to highlight the importance of choosing the classes and the classification method.</abstract><pub>Sciendo</pub><doi>10.2478/jaes-2020-0024</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2247-3769 |
ispartof | Journal of Applied Engineering Sciences, 2020-12, Vol.10 (2), p.163-172 |
issn | 2247-3769 2284-7197 |
language | eng |
recordid | cdi_crossref_primary_10_2478_jaes_2020_0024 |
source | De Gruyter Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | maximum likelihood classifier multispectral images photogrammetry support-vector machine |
title | Urban Classification from Aerial and Satellite Images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T19%3A44%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-walterdegruyter_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Urban%20Classification%20from%20Aerial%20and%20Satellite%20Images&rft.jtitle=Journal%20of%20Applied%20Engineering%20Sciences&rft.au=P%C3%A2rvu,%20Iuliana%20Maria&rft.date=2020-12-01&rft.volume=10&rft.issue=2&rft.spage=163&rft.epage=172&rft.pages=163-172&rft.issn=2247-3769&rft.eissn=2284-7197&rft_id=info:doi/10.2478/jaes-2020-0024&rft_dat=%3Cwalterdegruyter_cross%3E10_2478_jaes_2020_0024102163%3C/walterdegruyter_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |