SecuGuard: Leveraging pattern-exploiting training in language models for advanced software vulnerability detection
Identifying vulnerabilities within source code remains paramount in assuring software quality and security. This study introduces a refined semi-supervised learning methodology that capitalizes on pattern-exploiting training coupled with cloze-style interrogation techniques. The research strategy em...
Gespeichert in:
Veröffentlicht in: | International Journal of Mathematics and Computer in Engineering 2025-06, Vol.3 (1), p.47-56 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 56 |
---|---|
container_issue | 1 |
container_start_page | 47 |
container_title | International Journal of Mathematics and Computer in Engineering |
container_volume | 3 |
creator | Basharat, Mahmoud Omar, Marwan |
description | Identifying vulnerabilities within source code remains paramount in assuring software quality and security. This study introduces a refined semi-supervised learning methodology that capitalizes on pattern-exploiting training coupled with cloze-style interrogation techniques. The research strategy employed involves the training of a linguistic model on the Software Assurance Reference Dataset (SARD) and Devign datasets, which are replete with vulnerable code fragments. The training procedure entails obscuring specific segments of the code and subsequently prompting the model to ascertain the obfuscated tokens. Empirical analyses underscore the efficacy of our method in pinpointing vulnerabilities in source code, benefiting substantially from patterns discerned within the code fragments. This investigation underscores the potential of integrating pattern-exploiting training and cloze-based queries to enhance the precision of vulnerability detection within source code. |
doi_str_mv | 10.2478/ijmce-2025-0005 |
format | Article |
fullrecord | <record><control><sourceid>walterdegruyter_cross</sourceid><recordid>TN_cdi_crossref_primary_10_2478_ijmce_2025_0005</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_2478_ijmce_2025_00053147</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1337-23142310dcf93a91565336a522367b9befdbe1505b36f616886f1d4215fcb6a83</originalsourceid><addsrcrecordid>eNp1kM1OwzAQhC0EElXpmatfINQ_sZPACVVQkCpxAM6RY68jV65TOU5L356EcuDCYbWjlWa08yF0S8kdy4ty6bY7DRkjTGSEEHGBZqwSMiuILC__6Gu06HvXEEHLvJAFnaH4DnpYDyqae7yBA0TVutDivUoJYsjga-87l6ZTisqFSbiAvQrtoFrAu86A77HtIlbmoIIGg_vOpqOKgA-DD2Ng47xLJ2wggU6uCzfoyirfw-J3z9Hn89PH6iXbvK1fV4-bTFPOi4xxmo9DjLYVVxUVUnAulWCMy6KpGrCmASqIaLi0ksqylJaanFFhdSNVyedoec7Vsev7CLbeR7dT8VRTUk_U6h9q9UStnqiNjoez46j8WN9AG4fTKOptN8Qw_vqvk-YF_wavrncO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>SecuGuard: Leveraging pattern-exploiting training in language models for advanced software vulnerability detection</title><source>Walter De Gruyter: Open Access Journals</source><creator>Basharat, Mahmoud ; Omar, Marwan</creator><creatorcontrib>Basharat, Mahmoud ; Omar, Marwan</creatorcontrib><description>Identifying vulnerabilities within source code remains paramount in assuring software quality and security. This study introduces a refined semi-supervised learning methodology that capitalizes on pattern-exploiting training coupled with cloze-style interrogation techniques. The research strategy employed involves the training of a linguistic model on the Software Assurance Reference Dataset (SARD) and Devign datasets, which are replete with vulnerable code fragments. The training procedure entails obscuring specific segments of the code and subsequently prompting the model to ascertain the obfuscated tokens. Empirical analyses underscore the efficacy of our method in pinpointing vulnerabilities in source code, benefiting substantially from patterns discerned within the code fragments. This investigation underscores the potential of integrating pattern-exploiting training and cloze-based queries to enhance the precision of vulnerability detection within source code.</description><identifier>ISSN: 2956-7068</identifier><identifier>EISSN: 2956-7068</identifier><identifier>DOI: 10.2478/ijmce-2025-0005</identifier><language>eng</language><publisher>Sciendo</publisher><subject>68T07 ; cloze-style questions ; Language models ; pattern-exploiting training ; RoBERTa ; software vulnerabilities ; vulnerability detection</subject><ispartof>International Journal of Mathematics and Computer in Engineering, 2025-06, Vol.3 (1), p.47-56</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1337-23142310dcf93a91565336a522367b9befdbe1505b36f616886f1d4215fcb6a83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://sciendo.com/pdf/10.2478/ijmce-2025-0005$$EPDF$$P50$$Gwalterdegruyter$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://sciendo.com/article/10.2478/ijmce-2025-0005$$EHTML$$P50$$Gwalterdegruyter$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,27907,27908,75915,75916</link.rule.ids></links><search><creatorcontrib>Basharat, Mahmoud</creatorcontrib><creatorcontrib>Omar, Marwan</creatorcontrib><title>SecuGuard: Leveraging pattern-exploiting training in language models for advanced software vulnerability detection</title><title>International Journal of Mathematics and Computer in Engineering</title><description>Identifying vulnerabilities within source code remains paramount in assuring software quality and security. This study introduces a refined semi-supervised learning methodology that capitalizes on pattern-exploiting training coupled with cloze-style interrogation techniques. The research strategy employed involves the training of a linguistic model on the Software Assurance Reference Dataset (SARD) and Devign datasets, which are replete with vulnerable code fragments. The training procedure entails obscuring specific segments of the code and subsequently prompting the model to ascertain the obfuscated tokens. Empirical analyses underscore the efficacy of our method in pinpointing vulnerabilities in source code, benefiting substantially from patterns discerned within the code fragments. This investigation underscores the potential of integrating pattern-exploiting training and cloze-based queries to enhance the precision of vulnerability detection within source code.</description><subject>68T07</subject><subject>cloze-style questions</subject><subject>Language models</subject><subject>pattern-exploiting training</subject><subject>RoBERTa</subject><subject>software vulnerabilities</subject><subject>vulnerability detection</subject><issn>2956-7068</issn><issn>2956-7068</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNp1kM1OwzAQhC0EElXpmatfINQ_sZPACVVQkCpxAM6RY68jV65TOU5L356EcuDCYbWjlWa08yF0S8kdy4ty6bY7DRkjTGSEEHGBZqwSMiuILC__6Gu06HvXEEHLvJAFnaH4DnpYDyqae7yBA0TVutDivUoJYsjga-87l6ZTisqFSbiAvQrtoFrAu86A77HtIlbmoIIGg_vOpqOKgA-DD2Ng47xLJ2wggU6uCzfoyirfw-J3z9Hn89PH6iXbvK1fV4-bTFPOi4xxmo9DjLYVVxUVUnAulWCMy6KpGrCmASqIaLi0ksqylJaanFFhdSNVyedoec7Vsev7CLbeR7dT8VRTUk_U6h9q9UStnqiNjoez46j8WN9AG4fTKOptN8Qw_vqvk-YF_wavrncO</recordid><startdate>20250601</startdate><enddate>20250601</enddate><creator>Basharat, Mahmoud</creator><creator>Omar, Marwan</creator><general>Sciendo</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20250601</creationdate><title>SecuGuard: Leveraging pattern-exploiting training in language models for advanced software vulnerability detection</title><author>Basharat, Mahmoud ; Omar, Marwan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1337-23142310dcf93a91565336a522367b9befdbe1505b36f616886f1d4215fcb6a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>68T07</topic><topic>cloze-style questions</topic><topic>Language models</topic><topic>pattern-exploiting training</topic><topic>RoBERTa</topic><topic>software vulnerabilities</topic><topic>vulnerability detection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Basharat, Mahmoud</creatorcontrib><creatorcontrib>Omar, Marwan</creatorcontrib><collection>CrossRef</collection><jtitle>International Journal of Mathematics and Computer in Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Basharat, Mahmoud</au><au>Omar, Marwan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SecuGuard: Leveraging pattern-exploiting training in language models for advanced software vulnerability detection</atitle><jtitle>International Journal of Mathematics and Computer in Engineering</jtitle><date>2025-06-01</date><risdate>2025</risdate><volume>3</volume><issue>1</issue><spage>47</spage><epage>56</epage><pages>47-56</pages><issn>2956-7068</issn><eissn>2956-7068</eissn><abstract>Identifying vulnerabilities within source code remains paramount in assuring software quality and security. This study introduces a refined semi-supervised learning methodology that capitalizes on pattern-exploiting training coupled with cloze-style interrogation techniques. The research strategy employed involves the training of a linguistic model on the Software Assurance Reference Dataset (SARD) and Devign datasets, which are replete with vulnerable code fragments. The training procedure entails obscuring specific segments of the code and subsequently prompting the model to ascertain the obfuscated tokens. Empirical analyses underscore the efficacy of our method in pinpointing vulnerabilities in source code, benefiting substantially from patterns discerned within the code fragments. This investigation underscores the potential of integrating pattern-exploiting training and cloze-based queries to enhance the precision of vulnerability detection within source code.</abstract><pub>Sciendo</pub><doi>10.2478/ijmce-2025-0005</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2956-7068 |
ispartof | International Journal of Mathematics and Computer in Engineering, 2025-06, Vol.3 (1), p.47-56 |
issn | 2956-7068 2956-7068 |
language | eng |
recordid | cdi_crossref_primary_10_2478_ijmce_2025_0005 |
source | Walter De Gruyter: Open Access Journals |
subjects | 68T07 cloze-style questions Language models pattern-exploiting training RoBERTa software vulnerabilities vulnerability detection |
title | SecuGuard: Leveraging pattern-exploiting training in language models for advanced software vulnerability detection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T13%3A31%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-walterdegruyter_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SecuGuard:%20Leveraging%20pattern-exploiting%20training%20in%20language%20models%20for%20advanced%20software%20vulnerability%20detection&rft.jtitle=International%20Journal%20of%20Mathematics%20and%20Computer%20in%20Engineering&rft.au=Basharat,%20Mahmoud&rft.date=2025-06-01&rft.volume=3&rft.issue=1&rft.spage=47&rft.epage=56&rft.pages=47-56&rft.issn=2956-7068&rft.eissn=2956-7068&rft_id=info:doi/10.2478/ijmce-2025-0005&rft_dat=%3Cwalterdegruyter_cross%3E10_2478_ijmce_2025_00053147%3C/walterdegruyter_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |