On the Study and Possible Applications of Minimally Complex Chaos

The nature of chaos is elusive and disputed, however it can be connected to sensitivity to initial conditions caused by nonlinearity of the equations describing chaotic phenomena. A nowhere-near comprehensive list of such equations can still be shown: the Boltzmann equation, Ginzburg-Landau equation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BULETINUL INSTITUTULUI POLITEHNIC DIN IAȘI. Secția Matematica. Mecanică Teoretică. Fizică 2021-09, Vol.67 (3), p.21-29
Hauptverfasser: Roșu, Alin Iulian, Cazacu, Ana, Bodale, Ilie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 29
container_issue 3
container_start_page 21
container_title BULETINUL INSTITUTULUI POLITEHNIC DIN IAȘI. Secția Matematica. Mecanică Teoretică. Fizică
container_volume 67
creator Roșu, Alin Iulian
Cazacu, Ana
Bodale, Ilie
description The nature of chaos is elusive and disputed, however it can be connected to sensitivity to initial conditions caused by nonlinearity of the equations describing chaotic phenomena. A nowhere-near comprehensive list of such equations can still be shown: the Boltzmann equation, Ginzburg-Landau equation, Ishimori equation, Korteweg-de Vries equation, Landau-Lifshitz-Gilbert equation, Navier-Stokes equation, and many more. This disproportionality between input and output creates an analytically-difficult situation, one that is complicated both algebraically and numerically – however, the study of equations that are both simple and chaotic may yield useful connections between algebraic complexity and chaos. Such connections can be used to determine the simplest possible chaotic function, which can be used as a “chaotic operator” for various non-chaotic or chaotic functions, thus reducing the problem of chaos to one based strictly on algebra.
doi_str_mv 10.2478/bipmf-2021-0013
format Article
fullrecord <record><control><sourceid>walterdegruyter_cross</sourceid><recordid>TN_cdi_crossref_primary_10_2478_bipmf_2021_0013</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_2478_bipmf_2021_001367321</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1341-a89196320651130e978bb2b386466ce64854e77aceafa52c03bf660186e0d0f3</originalsourceid><addsrcrecordid>eNp1kEtLxDAUhYMoOIyzdps_UOfm0bQBN6X4GBgZwdmHtE2cSvogbdH-e1PHhRtX9yzuOXx8CN0SuKM8SbdF3Tc2okBJBEDYBVrRmCURlxIu_-RrtBmGugAuJEkFhxXKDi0eTwa_jVM1Y91W-LVbXpzBWd-7utRj3bUD7ix-qdu60c7NOO-a3pkvnJ90N9ygK6vdYDa_d42Ojw_H_DnaH552ebaPSsI4iXQqiRSMgogJYWBkkhYFLVjAEKI0gqcxN0miS6OtjmkJrLBCQMA0UIFla7Q9z5Y-AHpjVe8Djp8VAbU4UD8O1OJALQ5C4_7c-NRuNL4y736aQ1Af3eTbgPpfUySMEvYNcOVi-g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the Study and Possible Applications of Minimally Complex Chaos</title><source>De Gruyter Open Access Journals</source><creator>Roșu, Alin Iulian ; Cazacu, Ana ; Bodale, Ilie</creator><creatorcontrib>Roșu, Alin Iulian ; Cazacu, Ana ; Bodale, Ilie</creatorcontrib><description>The nature of chaos is elusive and disputed, however it can be connected to sensitivity to initial conditions caused by nonlinearity of the equations describing chaotic phenomena. A nowhere-near comprehensive list of such equations can still be shown: the Boltzmann equation, Ginzburg-Landau equation, Ishimori equation, Korteweg-de Vries equation, Landau-Lifshitz-Gilbert equation, Navier-Stokes equation, and many more. This disproportionality between input and output creates an analytically-difficult situation, one that is complicated both algebraically and numerically – however, the study of equations that are both simple and chaotic may yield useful connections between algebraic complexity and chaos. Such connections can be used to determine the simplest possible chaotic function, which can be used as a “chaotic operator” for various non-chaotic or chaotic functions, thus reducing the problem of chaos to one based strictly on algebra.</description><identifier>ISSN: 2537-4990</identifier><identifier>EISSN: 2537-4990</identifier><identifier>DOI: 10.2478/bipmf-2021-0013</identifier><language>eng</language><publisher>Sciendo</publisher><subject>attractor ; chaos ; nonlinearity ; turbulence</subject><ispartof>BULETINUL INSTITUTULUI POLITEHNIC DIN IAȘI. Secția Matematica. Mecanică Teoretică. Fizică, 2021-09, Vol.67 (3), p.21-29</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1341-a89196320651130e978bb2b386466ce64854e77aceafa52c03bf660186e0d0f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://sciendo.com/pdf/10.2478/bipmf-2021-0013$$EPDF$$P50$$Gwalterdegruyter$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://sciendo.com/article/10.2478/bipmf-2021-0013$$EHTML$$P50$$Gwalterdegruyter$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,76164,76165</link.rule.ids></links><search><creatorcontrib>Roșu, Alin Iulian</creatorcontrib><creatorcontrib>Cazacu, Ana</creatorcontrib><creatorcontrib>Bodale, Ilie</creatorcontrib><title>On the Study and Possible Applications of Minimally Complex Chaos</title><title>BULETINUL INSTITUTULUI POLITEHNIC DIN IAȘI. Secția Matematica. Mecanică Teoretică. Fizică</title><description>The nature of chaos is elusive and disputed, however it can be connected to sensitivity to initial conditions caused by nonlinearity of the equations describing chaotic phenomena. A nowhere-near comprehensive list of such equations can still be shown: the Boltzmann equation, Ginzburg-Landau equation, Ishimori equation, Korteweg-de Vries equation, Landau-Lifshitz-Gilbert equation, Navier-Stokes equation, and many more. This disproportionality between input and output creates an analytically-difficult situation, one that is complicated both algebraically and numerically – however, the study of equations that are both simple and chaotic may yield useful connections between algebraic complexity and chaos. Such connections can be used to determine the simplest possible chaotic function, which can be used as a “chaotic operator” for various non-chaotic or chaotic functions, thus reducing the problem of chaos to one based strictly on algebra.</description><subject>attractor</subject><subject>chaos</subject><subject>nonlinearity</subject><subject>turbulence</subject><issn>2537-4990</issn><issn>2537-4990</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLxDAUhYMoOIyzdps_UOfm0bQBN6X4GBgZwdmHtE2cSvogbdH-e1PHhRtX9yzuOXx8CN0SuKM8SbdF3Tc2okBJBEDYBVrRmCURlxIu_-RrtBmGugAuJEkFhxXKDi0eTwa_jVM1Y91W-LVbXpzBWd-7utRj3bUD7ix-qdu60c7NOO-a3pkvnJ90N9ygK6vdYDa_d42Ojw_H_DnaH552ebaPSsI4iXQqiRSMgogJYWBkkhYFLVjAEKI0gqcxN0miS6OtjmkJrLBCQMA0UIFla7Q9z5Y-AHpjVe8Djp8VAbU4UD8O1OJALQ5C4_7c-NRuNL4y736aQ1Af3eTbgPpfUySMEvYNcOVi-g</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Roșu, Alin Iulian</creator><creator>Cazacu, Ana</creator><creator>Bodale, Ilie</creator><general>Sciendo</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210901</creationdate><title>On the Study and Possible Applications of Minimally Complex Chaos</title><author>Roșu, Alin Iulian ; Cazacu, Ana ; Bodale, Ilie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1341-a89196320651130e978bb2b386466ce64854e77aceafa52c03bf660186e0d0f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>attractor</topic><topic>chaos</topic><topic>nonlinearity</topic><topic>turbulence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roșu, Alin Iulian</creatorcontrib><creatorcontrib>Cazacu, Ana</creatorcontrib><creatorcontrib>Bodale, Ilie</creatorcontrib><collection>CrossRef</collection><jtitle>BULETINUL INSTITUTULUI POLITEHNIC DIN IAȘI. Secția Matematica. Mecanică Teoretică. Fizică</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roșu, Alin Iulian</au><au>Cazacu, Ana</au><au>Bodale, Ilie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Study and Possible Applications of Minimally Complex Chaos</atitle><jtitle>BULETINUL INSTITUTULUI POLITEHNIC DIN IAȘI. Secția Matematica. Mecanică Teoretică. Fizică</jtitle><date>2021-09-01</date><risdate>2021</risdate><volume>67</volume><issue>3</issue><spage>21</spage><epage>29</epage><pages>21-29</pages><issn>2537-4990</issn><eissn>2537-4990</eissn><abstract>The nature of chaos is elusive and disputed, however it can be connected to sensitivity to initial conditions caused by nonlinearity of the equations describing chaotic phenomena. A nowhere-near comprehensive list of such equations can still be shown: the Boltzmann equation, Ginzburg-Landau equation, Ishimori equation, Korteweg-de Vries equation, Landau-Lifshitz-Gilbert equation, Navier-Stokes equation, and many more. This disproportionality between input and output creates an analytically-difficult situation, one that is complicated both algebraically and numerically – however, the study of equations that are both simple and chaotic may yield useful connections between algebraic complexity and chaos. Such connections can be used to determine the simplest possible chaotic function, which can be used as a “chaotic operator” for various non-chaotic or chaotic functions, thus reducing the problem of chaos to one based strictly on algebra.</abstract><pub>Sciendo</pub><doi>10.2478/bipmf-2021-0013</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2537-4990
ispartof BULETINUL INSTITUTULUI POLITEHNIC DIN IAȘI. Secția Matematica. Mecanică Teoretică. Fizică, 2021-09, Vol.67 (3), p.21-29
issn 2537-4990
2537-4990
language eng
recordid cdi_crossref_primary_10_2478_bipmf_2021_0013
source De Gruyter Open Access Journals
subjects attractor
chaos
nonlinearity
turbulence
title On the Study and Possible Applications of Minimally Complex Chaos
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T07%3A25%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-walterdegruyter_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Study%20and%20Possible%20Applications%20of%20Minimally%20Complex%20Chaos&rft.jtitle=BULETINUL%20INSTITUTULUI%20POLITEHNIC%20DIN%20IA%C8%98I.%20Sec%C8%9Bia%20Matematica.%20Mecanic%C4%83%20Teoretic%C4%83.%20Fizic%C4%83&rft.au=Ro%C8%99u,%20Alin%20Iulian&rft.date=2021-09-01&rft.volume=67&rft.issue=3&rft.spage=21&rft.epage=29&rft.pages=21-29&rft.issn=2537-4990&rft.eissn=2537-4990&rft_id=info:doi/10.2478/bipmf-2021-0013&rft_dat=%3Cwalterdegruyter_cross%3E10_2478_bipmf_2021_001367321%3C/walterdegruyter_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true