Machine Learning Techniques for Fatal Accident Prediction

Ensuring public safety on our roads is a top priority, and the prevalence of road accidents is a major concern. Fortunately, advances in machine learning allow us to use data to predict and prevent such incidents. Our study delves into the development and implementation of machine learning technique...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACC JOURNAL 2024-03, Vol.30 (1), p.24-49
Hauptverfasser: Zermane, Hanane, Zermane, Abderrahim, Tohir, Mohd Zahirasri Mohd
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 49
container_issue 1
container_start_page 24
container_title ACC JOURNAL
container_volume 30
creator Zermane, Hanane
Zermane, Abderrahim
Tohir, Mohd Zahirasri Mohd
description Ensuring public safety on our roads is a top priority, and the prevalence of road accidents is a major concern. Fortunately, advances in machine learning allow us to use data to predict and prevent such incidents. Our study delves into the development and implementation of machine learning techniques for predicting road accidents, using rich datasets from Catalonia and Toronto Fatal Collision. Our comprehensive research reveals that ensemble learning methods outperform other models in most prediction tasks, while Decision Tree and K-NN exhibit poor performance. Additionally, our findings highlight the complexity involved in predicting various aspects of crashes, as the Stacking Regressor shows variability in its performance across different target variables. Overall, our study provides valuable insights that can significantly contribute to ongoing efforts to reduce accidents and their consequences by enabling more accurate predictions.
doi_str_mv 10.2478/acc-2024-0003
format Article
fullrecord <record><control><sourceid>walterdegruyter_cross</sourceid><recordid>TN_cdi_crossref_primary_10_2478_acc_2024_0003</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_2478_acc_2024_000330124</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1284-dcb5a7cb98eedcfbf5c093a4505429eb3e6deb7aed9f82b46268b3f1f061686f3</originalsourceid><addsrcrecordid>eNp1jz1PwzAURS0EElXpyJ4_YPBXEoetqiggBcFQZst-fm6NggNOKtR_T6oysDC9O9z7dA4h15zdCFXrWwtABROKMsbkGZmJsuaUVVye_8mXZDEM0bFSKam0bGakebawiwmLFm1OMW2LDcIuxa89DkXoc7G2o-2KJUD0mMbiNaOPMMY-XZGLYLsBF793Tt7W95vVI21fHp5Wy5YCF1pRD660NbhGI3oILpTAGmlVOUGIBp3EyqOrLfomaOFUJSrtZOBh4q10FeSc0NNfyP0wZAzmM8cPmw-GM3NUN5O6Oaqbo_rUvzv1v203Yva4zfvDFMx7v89pIv1nx7hQ8ge4_F-E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Machine Learning Techniques for Fatal Accident Prediction</title><source>De Gruyter Open Access Journals</source><creator>Zermane, Hanane ; Zermane, Abderrahim ; Tohir, Mohd Zahirasri Mohd</creator><creatorcontrib>Zermane, Hanane ; Zermane, Abderrahim ; Tohir, Mohd Zahirasri Mohd</creatorcontrib><description>Ensuring public safety on our roads is a top priority, and the prevalence of road accidents is a major concern. Fortunately, advances in machine learning allow us to use data to predict and prevent such incidents. Our study delves into the development and implementation of machine learning techniques for predicting road accidents, using rich datasets from Catalonia and Toronto Fatal Collision. Our comprehensive research reveals that ensemble learning methods outperform other models in most prediction tasks, while Decision Tree and K-NN exhibit poor performance. Additionally, our findings highlight the complexity involved in predicting various aspects of crashes, as the Stacking Regressor shows variability in its performance across different target variables. Overall, our study provides valuable insights that can significantly contribute to ongoing efforts to reduce accidents and their consequences by enabling more accurate predictions.</description><identifier>ISSN: 2571-0613</identifier><identifier>EISSN: 2571-0613</identifier><identifier>DOI: 10.2478/acc-2024-0003</identifier><language>eng</language><publisher>Sciendo</publisher><subject>Accident forecasting ; Accident prevention ; Machine learning ; Risk assessment ; Road safety ; Traffic safety</subject><ispartof>ACC JOURNAL, 2024-03, Vol.30 (1), p.24-49</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1284-dcb5a7cb98eedcfbf5c093a4505429eb3e6deb7aed9f82b46268b3f1f061686f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://sciendo.com/pdf/10.2478/acc-2024-0003$$EPDF$$P50$$Gwalterdegruyter$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://sciendo.com/article/10.2478/acc-2024-0003$$EHTML$$P50$$Gwalterdegruyter$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,75907,75908</link.rule.ids></links><search><creatorcontrib>Zermane, Hanane</creatorcontrib><creatorcontrib>Zermane, Abderrahim</creatorcontrib><creatorcontrib>Tohir, Mohd Zahirasri Mohd</creatorcontrib><title>Machine Learning Techniques for Fatal Accident Prediction</title><title>ACC JOURNAL</title><description>Ensuring public safety on our roads is a top priority, and the prevalence of road accidents is a major concern. Fortunately, advances in machine learning allow us to use data to predict and prevent such incidents. Our study delves into the development and implementation of machine learning techniques for predicting road accidents, using rich datasets from Catalonia and Toronto Fatal Collision. Our comprehensive research reveals that ensemble learning methods outperform other models in most prediction tasks, while Decision Tree and K-NN exhibit poor performance. Additionally, our findings highlight the complexity involved in predicting various aspects of crashes, as the Stacking Regressor shows variability in its performance across different target variables. Overall, our study provides valuable insights that can significantly contribute to ongoing efforts to reduce accidents and their consequences by enabling more accurate predictions.</description><subject>Accident forecasting</subject><subject>Accident prevention</subject><subject>Machine learning</subject><subject>Risk assessment</subject><subject>Road safety</subject><subject>Traffic safety</subject><issn>2571-0613</issn><issn>2571-0613</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1jz1PwzAURS0EElXpyJ4_YPBXEoetqiggBcFQZst-fm6NggNOKtR_T6oysDC9O9z7dA4h15zdCFXrWwtABROKMsbkGZmJsuaUVVye_8mXZDEM0bFSKam0bGakebawiwmLFm1OMW2LDcIuxa89DkXoc7G2o-2KJUD0mMbiNaOPMMY-XZGLYLsBF793Tt7W95vVI21fHp5Wy5YCF1pRD660NbhGI3oILpTAGmlVOUGIBp3EyqOrLfomaOFUJSrtZOBh4q10FeSc0NNfyP0wZAzmM8cPmw-GM3NUN5O6Oaqbo_rUvzv1v203Yva4zfvDFMx7v89pIv1nx7hQ8ge4_F-E</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Zermane, Hanane</creator><creator>Zermane, Abderrahim</creator><creator>Tohir, Mohd Zahirasri Mohd</creator><general>Sciendo</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240301</creationdate><title>Machine Learning Techniques for Fatal Accident Prediction</title><author>Zermane, Hanane ; Zermane, Abderrahim ; Tohir, Mohd Zahirasri Mohd</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1284-dcb5a7cb98eedcfbf5c093a4505429eb3e6deb7aed9f82b46268b3f1f061686f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accident forecasting</topic><topic>Accident prevention</topic><topic>Machine learning</topic><topic>Risk assessment</topic><topic>Road safety</topic><topic>Traffic safety</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zermane, Hanane</creatorcontrib><creatorcontrib>Zermane, Abderrahim</creatorcontrib><creatorcontrib>Tohir, Mohd Zahirasri Mohd</creatorcontrib><collection>CrossRef</collection><jtitle>ACC JOURNAL</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zermane, Hanane</au><au>Zermane, Abderrahim</au><au>Tohir, Mohd Zahirasri Mohd</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine Learning Techniques for Fatal Accident Prediction</atitle><jtitle>ACC JOURNAL</jtitle><date>2024-03-01</date><risdate>2024</risdate><volume>30</volume><issue>1</issue><spage>24</spage><epage>49</epage><pages>24-49</pages><issn>2571-0613</issn><eissn>2571-0613</eissn><abstract>Ensuring public safety on our roads is a top priority, and the prevalence of road accidents is a major concern. Fortunately, advances in machine learning allow us to use data to predict and prevent such incidents. Our study delves into the development and implementation of machine learning techniques for predicting road accidents, using rich datasets from Catalonia and Toronto Fatal Collision. Our comprehensive research reveals that ensemble learning methods outperform other models in most prediction tasks, while Decision Tree and K-NN exhibit poor performance. Additionally, our findings highlight the complexity involved in predicting various aspects of crashes, as the Stacking Regressor shows variability in its performance across different target variables. Overall, our study provides valuable insights that can significantly contribute to ongoing efforts to reduce accidents and their consequences by enabling more accurate predictions.</abstract><pub>Sciendo</pub><doi>10.2478/acc-2024-0003</doi><tpages>26</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2571-0613
ispartof ACC JOURNAL, 2024-03, Vol.30 (1), p.24-49
issn 2571-0613
2571-0613
language eng
recordid cdi_crossref_primary_10_2478_acc_2024_0003
source De Gruyter Open Access Journals
subjects Accident forecasting
Accident prevention
Machine learning
Risk assessment
Road safety
Traffic safety
title Machine Learning Techniques for Fatal Accident Prediction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T17%3A09%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-walterdegruyter_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20Learning%20Techniques%20for%20Fatal%20Accident%20Prediction&rft.jtitle=ACC%20JOURNAL&rft.au=Zermane,%20Hanane&rft.date=2024-03-01&rft.volume=30&rft.issue=1&rft.spage=24&rft.epage=49&rft.pages=24-49&rft.issn=2571-0613&rft.eissn=2571-0613&rft_id=info:doi/10.2478/acc-2024-0003&rft_dat=%3Cwalterdegruyter_cross%3E10_2478_acc_2024_000330124%3C/walterdegruyter_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true