Machine Learning Techniques for Fatal Accident Prediction
Ensuring public safety on our roads is a top priority, and the prevalence of road accidents is a major concern. Fortunately, advances in machine learning allow us to use data to predict and prevent such incidents. Our study delves into the development and implementation of machine learning technique...
Gespeichert in:
Veröffentlicht in: | ACC JOURNAL 2024-03, Vol.30 (1), p.24-49 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 49 |
---|---|
container_issue | 1 |
container_start_page | 24 |
container_title | ACC JOURNAL |
container_volume | 30 |
creator | Zermane, Hanane Zermane, Abderrahim Tohir, Mohd Zahirasri Mohd |
description | Ensuring public safety on our roads is a top priority, and the prevalence of road accidents is a major concern. Fortunately, advances in machine learning allow us to use data to predict and prevent such incidents. Our study delves into the development and implementation of machine learning techniques for predicting road accidents, using rich datasets from Catalonia and Toronto Fatal Collision. Our comprehensive research reveals that ensemble learning methods outperform other models in most prediction tasks, while Decision Tree and K-NN exhibit poor performance. Additionally, our findings highlight the complexity involved in predicting various aspects of crashes, as the Stacking Regressor shows variability in its performance across different target variables. Overall, our study provides valuable insights that can significantly contribute to ongoing efforts to reduce accidents and their consequences by enabling more accurate predictions. |
doi_str_mv | 10.2478/acc-2024-0003 |
format | Article |
fullrecord | <record><control><sourceid>walterdegruyter_cross</sourceid><recordid>TN_cdi_crossref_primary_10_2478_acc_2024_0003</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_2478_acc_2024_000330124</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1284-dcb5a7cb98eedcfbf5c093a4505429eb3e6deb7aed9f82b46268b3f1f061686f3</originalsourceid><addsrcrecordid>eNp1jz1PwzAURS0EElXpyJ4_YPBXEoetqiggBcFQZst-fm6NggNOKtR_T6oysDC9O9z7dA4h15zdCFXrWwtABROKMsbkGZmJsuaUVVye_8mXZDEM0bFSKam0bGakebawiwmLFm1OMW2LDcIuxa89DkXoc7G2o-2KJUD0mMbiNaOPMMY-XZGLYLsBF793Tt7W95vVI21fHp5Wy5YCF1pRD660NbhGI3oILpTAGmlVOUGIBp3EyqOrLfomaOFUJSrtZOBh4q10FeSc0NNfyP0wZAzmM8cPmw-GM3NUN5O6Oaqbo_rUvzv1v203Yva4zfvDFMx7v89pIv1nx7hQ8ge4_F-E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Machine Learning Techniques for Fatal Accident Prediction</title><source>De Gruyter Open Access Journals</source><creator>Zermane, Hanane ; Zermane, Abderrahim ; Tohir, Mohd Zahirasri Mohd</creator><creatorcontrib>Zermane, Hanane ; Zermane, Abderrahim ; Tohir, Mohd Zahirasri Mohd</creatorcontrib><description>Ensuring public safety on our roads is a top priority, and the prevalence of road accidents is a major concern. Fortunately, advances in machine learning allow us to use data to predict and prevent such incidents. Our study delves into the development and implementation of machine learning techniques for predicting road accidents, using rich datasets from Catalonia and Toronto Fatal Collision. Our comprehensive research reveals that ensemble learning methods outperform other models in most prediction tasks, while Decision Tree and K-NN exhibit poor performance. Additionally, our findings highlight the complexity involved in predicting various aspects of crashes, as the Stacking Regressor shows variability in its performance across different target variables. Overall, our study provides valuable insights that can significantly contribute to ongoing efforts to reduce accidents and their consequences by enabling more accurate predictions.</description><identifier>ISSN: 2571-0613</identifier><identifier>EISSN: 2571-0613</identifier><identifier>DOI: 10.2478/acc-2024-0003</identifier><language>eng</language><publisher>Sciendo</publisher><subject>Accident forecasting ; Accident prevention ; Machine learning ; Risk assessment ; Road safety ; Traffic safety</subject><ispartof>ACC JOURNAL, 2024-03, Vol.30 (1), p.24-49</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1284-dcb5a7cb98eedcfbf5c093a4505429eb3e6deb7aed9f82b46268b3f1f061686f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://sciendo.com/pdf/10.2478/acc-2024-0003$$EPDF$$P50$$Gwalterdegruyter$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://sciendo.com/article/10.2478/acc-2024-0003$$EHTML$$P50$$Gwalterdegruyter$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,75907,75908</link.rule.ids></links><search><creatorcontrib>Zermane, Hanane</creatorcontrib><creatorcontrib>Zermane, Abderrahim</creatorcontrib><creatorcontrib>Tohir, Mohd Zahirasri Mohd</creatorcontrib><title>Machine Learning Techniques for Fatal Accident Prediction</title><title>ACC JOURNAL</title><description>Ensuring public safety on our roads is a top priority, and the prevalence of road accidents is a major concern. Fortunately, advances in machine learning allow us to use data to predict and prevent such incidents. Our study delves into the development and implementation of machine learning techniques for predicting road accidents, using rich datasets from Catalonia and Toronto Fatal Collision. Our comprehensive research reveals that ensemble learning methods outperform other models in most prediction tasks, while Decision Tree and K-NN exhibit poor performance. Additionally, our findings highlight the complexity involved in predicting various aspects of crashes, as the Stacking Regressor shows variability in its performance across different target variables. Overall, our study provides valuable insights that can significantly contribute to ongoing efforts to reduce accidents and their consequences by enabling more accurate predictions.</description><subject>Accident forecasting</subject><subject>Accident prevention</subject><subject>Machine learning</subject><subject>Risk assessment</subject><subject>Road safety</subject><subject>Traffic safety</subject><issn>2571-0613</issn><issn>2571-0613</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1jz1PwzAURS0EElXpyJ4_YPBXEoetqiggBcFQZst-fm6NggNOKtR_T6oysDC9O9z7dA4h15zdCFXrWwtABROKMsbkGZmJsuaUVVye_8mXZDEM0bFSKam0bGakebawiwmLFm1OMW2LDcIuxa89DkXoc7G2o-2KJUD0mMbiNaOPMMY-XZGLYLsBF793Tt7W95vVI21fHp5Wy5YCF1pRD660NbhGI3oILpTAGmlVOUGIBp3EyqOrLfomaOFUJSrtZOBh4q10FeSc0NNfyP0wZAzmM8cPmw-GM3NUN5O6Oaqbo_rUvzv1v203Yva4zfvDFMx7v89pIv1nx7hQ8ge4_F-E</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Zermane, Hanane</creator><creator>Zermane, Abderrahim</creator><creator>Tohir, Mohd Zahirasri Mohd</creator><general>Sciendo</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240301</creationdate><title>Machine Learning Techniques for Fatal Accident Prediction</title><author>Zermane, Hanane ; Zermane, Abderrahim ; Tohir, Mohd Zahirasri Mohd</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1284-dcb5a7cb98eedcfbf5c093a4505429eb3e6deb7aed9f82b46268b3f1f061686f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accident forecasting</topic><topic>Accident prevention</topic><topic>Machine learning</topic><topic>Risk assessment</topic><topic>Road safety</topic><topic>Traffic safety</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zermane, Hanane</creatorcontrib><creatorcontrib>Zermane, Abderrahim</creatorcontrib><creatorcontrib>Tohir, Mohd Zahirasri Mohd</creatorcontrib><collection>CrossRef</collection><jtitle>ACC JOURNAL</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zermane, Hanane</au><au>Zermane, Abderrahim</au><au>Tohir, Mohd Zahirasri Mohd</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine Learning Techniques for Fatal Accident Prediction</atitle><jtitle>ACC JOURNAL</jtitle><date>2024-03-01</date><risdate>2024</risdate><volume>30</volume><issue>1</issue><spage>24</spage><epage>49</epage><pages>24-49</pages><issn>2571-0613</issn><eissn>2571-0613</eissn><abstract>Ensuring public safety on our roads is a top priority, and the prevalence of road accidents is a major concern. Fortunately, advances in machine learning allow us to use data to predict and prevent such incidents. Our study delves into the development and implementation of machine learning techniques for predicting road accidents, using rich datasets from Catalonia and Toronto Fatal Collision. Our comprehensive research reveals that ensemble learning methods outperform other models in most prediction tasks, while Decision Tree and K-NN exhibit poor performance. Additionally, our findings highlight the complexity involved in predicting various aspects of crashes, as the Stacking Regressor shows variability in its performance across different target variables. Overall, our study provides valuable insights that can significantly contribute to ongoing efforts to reduce accidents and their consequences by enabling more accurate predictions.</abstract><pub>Sciendo</pub><doi>10.2478/acc-2024-0003</doi><tpages>26</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2571-0613 |
ispartof | ACC JOURNAL, 2024-03, Vol.30 (1), p.24-49 |
issn | 2571-0613 2571-0613 |
language | eng |
recordid | cdi_crossref_primary_10_2478_acc_2024_0003 |
source | De Gruyter Open Access Journals |
subjects | Accident forecasting Accident prevention Machine learning Risk assessment Road safety Traffic safety |
title | Machine Learning Techniques for Fatal Accident Prediction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T17%3A09%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-walterdegruyter_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20Learning%20Techniques%20for%20Fatal%20Accident%20Prediction&rft.jtitle=ACC%20JOURNAL&rft.au=Zermane,%20Hanane&rft.date=2024-03-01&rft.volume=30&rft.issue=1&rft.spage=24&rft.epage=49&rft.pages=24-49&rft.issn=2571-0613&rft.eissn=2571-0613&rft_id=info:doi/10.2478/acc-2024-0003&rft_dat=%3Cwalterdegruyter_cross%3E10_2478_acc_2024_000330124%3C/walterdegruyter_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |