LATTICE DECOMPOSITION OF MODULES

The first aim of this work is to characterize when the lattice of all submodules of a module is a direct product of two lattices. In particular, which decompositions of a module $M$ produce these decompositions: the \emph{lattice decompositions}. In a first \textit{\'{e}tage} this can be done u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International electronic journal of algebra 2021-01, Vol.30 (30), p.285-303
Hauptverfasser: GARCIA, J. M., JARA, P., MERINO, L. M.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 303
container_issue 30
container_start_page 285
container_title International electronic journal of algebra
container_volume 30
creator GARCIA, J. M.
JARA, P.
MERINO, L. M.
description The first aim of this work is to characterize when the lattice of all submodules of a module is a direct product of two lattices. In particular, which decompositions of a module $M$ produce these decompositions: the \emph{lattice decompositions}. In a first \textit{\'{e}tage} this can be done using endomorphisms of $M$, which produce a decomposition of the ring $\End_R(M)$ as a product of rings, i.e., they are central idempotent endomorphisms. But since not every central idempotent endomorphism produces a lattice decomposition, the classical theory is not of application. In a second step we characterize when a particular module $M$ has a lattice decomposition; this can be done, in the commutative case in a simple way using the support, $\Supp(M)$, of $M$; but, in general, it is not so easy. Once we know when a module decomposes, we look for characterizing its decompositions. We show that a good framework for this study, and its generalizations, could be provided by the category $\sigma[M]$, the smallest Grothendieck subcategory of $\rMod{R}$ containing $M$.
doi_str_mv 10.24330/ieja.969940
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_24330_ieja_969940</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_24330_ieja_969940</sourcerecordid><originalsourceid>FETCH-LOGICAL-c230t-8cd46021ccc372b8698e321744a048a647ea408e3650e80c2cf9221180b32e743</originalsourceid><addsrcrecordid>eNpNj8FuwjAQRK2qSEWUWz8gH0Doendx7CMKgUYKNRLhbBnXkUBUreJe-vdNC4fOZUZzmNET4knCHJkInk_x7OdGGcNwJ8aSQOUKWN__yw9imtIZBtGCDfBYZM2ybeuyylZVabc7u6_b2r5mdp1t7erQVPtHMer8JcXpzSfisK7a8iVv7KYul00ekOAr1-GNFaAMIVCBR62MjoSyYPbDr1dcRM8wdGoBUUPA0BlEKTUcCWPBNBGz627oP1LqY-c--9O777-dBPcH6H4B3RWQfgC8mT38</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>LATTICE DECOMPOSITION OF MODULES</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>GARCIA, J. M. ; JARA, P. ; MERINO, L. M.</creator><creatorcontrib>GARCIA, J. M. ; JARA, P. ; MERINO, L. M.</creatorcontrib><description>The first aim of this work is to characterize when the lattice of all submodules of a module is a direct product of two lattices. In particular, which decompositions of a module $M$ produce these decompositions: the \emph{lattice decompositions}. In a first \textit{\'{e}tage} this can be done using endomorphisms of $M$, which produce a decomposition of the ring $\End_R(M)$ as a product of rings, i.e., they are central idempotent endomorphisms. But since not every central idempotent endomorphism produces a lattice decomposition, the classical theory is not of application. In a second step we characterize when a particular module $M$ has a lattice decomposition; this can be done, in the commutative case in a simple way using the support, $\Supp(M)$, of $M$; but, in general, it is not so easy. Once we know when a module decomposes, we look for characterizing its decompositions. We show that a good framework for this study, and its generalizations, could be provided by the category $\sigma[M]$, the smallest Grothendieck subcategory of $\rMod{R}$ containing $M$.</description><identifier>ISSN: 1306-6048</identifier><identifier>EISSN: 1306-6048</identifier><identifier>DOI: 10.24330/ieja.969940</identifier><language>eng</language><ispartof>International electronic journal of algebra, 2021-01, Vol.30 (30), p.285-303</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c230t-8cd46021ccc372b8698e321744a048a647ea408e3650e80c2cf9221180b32e743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>GARCIA, J. M.</creatorcontrib><creatorcontrib>JARA, P.</creatorcontrib><creatorcontrib>MERINO, L. M.</creatorcontrib><title>LATTICE DECOMPOSITION OF MODULES</title><title>International electronic journal of algebra</title><description>The first aim of this work is to characterize when the lattice of all submodules of a module is a direct product of two lattices. In particular, which decompositions of a module $M$ produce these decompositions: the \emph{lattice decompositions}. In a first \textit{\'{e}tage} this can be done using endomorphisms of $M$, which produce a decomposition of the ring $\End_R(M)$ as a product of rings, i.e., they are central idempotent endomorphisms. But since not every central idempotent endomorphism produces a lattice decomposition, the classical theory is not of application. In a second step we characterize when a particular module $M$ has a lattice decomposition; this can be done, in the commutative case in a simple way using the support, $\Supp(M)$, of $M$; but, in general, it is not so easy. Once we know when a module decomposes, we look for characterizing its decompositions. We show that a good framework for this study, and its generalizations, could be provided by the category $\sigma[M]$, the smallest Grothendieck subcategory of $\rMod{R}$ containing $M$.</description><issn>1306-6048</issn><issn>1306-6048</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpNj8FuwjAQRK2qSEWUWz8gH0Doendx7CMKgUYKNRLhbBnXkUBUreJe-vdNC4fOZUZzmNET4knCHJkInk_x7OdGGcNwJ8aSQOUKWN__yw9imtIZBtGCDfBYZM2ybeuyylZVabc7u6_b2r5mdp1t7erQVPtHMer8JcXpzSfisK7a8iVv7KYul00ekOAr1-GNFaAMIVCBR62MjoSyYPbDr1dcRM8wdGoBUUPA0BlEKTUcCWPBNBGz627oP1LqY-c--9O777-dBPcH6H4B3RWQfgC8mT38</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>GARCIA, J. M.</creator><creator>JARA, P.</creator><creator>MERINO, L. M.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210101</creationdate><title>LATTICE DECOMPOSITION OF MODULES</title><author>GARCIA, J. M. ; JARA, P. ; MERINO, L. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c230t-8cd46021ccc372b8698e321744a048a647ea408e3650e80c2cf9221180b32e743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>GARCIA, J. M.</creatorcontrib><creatorcontrib>JARA, P.</creatorcontrib><creatorcontrib>MERINO, L. M.</creatorcontrib><collection>CrossRef</collection><jtitle>International electronic journal of algebra</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>GARCIA, J. M.</au><au>JARA, P.</au><au>MERINO, L. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LATTICE DECOMPOSITION OF MODULES</atitle><jtitle>International electronic journal of algebra</jtitle><date>2021-01-01</date><risdate>2021</risdate><volume>30</volume><issue>30</issue><spage>285</spage><epage>303</epage><pages>285-303</pages><issn>1306-6048</issn><eissn>1306-6048</eissn><abstract>The first aim of this work is to characterize when the lattice of all submodules of a module is a direct product of two lattices. In particular, which decompositions of a module $M$ produce these decompositions: the \emph{lattice decompositions}. In a first \textit{\'{e}tage} this can be done using endomorphisms of $M$, which produce a decomposition of the ring $\End_R(M)$ as a product of rings, i.e., they are central idempotent endomorphisms. But since not every central idempotent endomorphism produces a lattice decomposition, the classical theory is not of application. In a second step we characterize when a particular module $M$ has a lattice decomposition; this can be done, in the commutative case in a simple way using the support, $\Supp(M)$, of $M$; but, in general, it is not so easy. Once we know when a module decomposes, we look for characterizing its decompositions. We show that a good framework for this study, and its generalizations, could be provided by the category $\sigma[M]$, the smallest Grothendieck subcategory of $\rMod{R}$ containing $M$.</abstract><doi>10.24330/ieja.969940</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1306-6048
ispartof International electronic journal of algebra, 2021-01, Vol.30 (30), p.285-303
issn 1306-6048
1306-6048
language eng
recordid cdi_crossref_primary_10_24330_ieja_969940
source EZB-FREE-00999 freely available EZB journals
title LATTICE DECOMPOSITION OF MODULES
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T01%3A07%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LATTICE%20DECOMPOSITION%20OF%20MODULES&rft.jtitle=International%20electronic%20journal%20of%20algebra&rft.au=GARCIA,%20J.%20M.&rft.date=2021-01-01&rft.volume=30&rft.issue=30&rft.spage=285&rft.epage=303&rft.pages=285-303&rft.issn=1306-6048&rft.eissn=1306-6048&rft_id=info:doi/10.24330/ieja.969940&rft_dat=%3Ccrossref%3E10_24330_ieja_969940%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true