Regresi Spline Polynomial Truncated Biprediktor untuk Identifikasi Perubahan Jumlah Trombosit Pasien Demam Berdarah Dengue

This paper is a longitudinal study using a nonparametric regression model to identify changes in platelet count from dengue fever. Changes in platelet counts were analyzed based on treatment time and hematocrit count factors. The estimator method proposed is spline polynomial truncated bipredictor....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Al-Khwarizmi (Online) 2019-10, Vol.7 (2), p.97-112
1. Verfasser: Islamiyati, Anna
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 112
container_issue 2
container_start_page 97
container_title Al-Khwarizmi (Online)
container_volume 7
creator Islamiyati, Anna
description This paper is a longitudinal study using a nonparametric regression model to identify changes in platelet count from dengue fever. Changes in platelet counts were analyzed based on treatment time and hematocrit count factors. The estimator method proposed is spline polynomial truncated bipredictor. Based on the results of the simultaneous model estimation, we obtained GCV = 714.72 and R2 = 95.9%, it means the model is feasible to explain and identify changes in platelet count based on the time of treatment and the number of hematocrit from DBD patients. Based on the data, there are four patterns of platelet change based on time of treatment and three patterns of platelet change based on hematocrit that are different from each other.Abstrak:Paper ini merupakan studi longitudinal dengan menggunakan model regresi nonparametrik untuk mengidentifikasi perubahan jumlah trombosit demam berdarah. Perubahan jumlah trombosit dianalisis berdasarkan faktor waktu perawatan dan jumlah hematokrit. Metode estimator yang diusulkan adalah spline polynomial truncated bi prediktor. Berdasarkan hasil taksiran model simultan diperoleh GCV = 714,72 dan R2 = 95,9%, artinya model layak untuk menjelaskan dan mengidentifikasi perubahan jumlah trombosit berdasarkan waktu perawatan dan jumlah hematokrit pasien DBD. Berdasarkan data, terdapat empat pola perubahan trombosit berdasarkan waktu perawatan dan tiga pola perubahan trombosit berdasarkan hematokrit yang berbeda satu sama lain.
doi_str_mv 10.24256/jpmipa.v7i2.799
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_24256_jpmipa_v7i2_799</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_24256_jpmipa_v7i2_799</sourcerecordid><originalsourceid>FETCH-crossref_primary_10_24256_jpmipa_v7i2_7993</originalsourceid><addsrcrecordid>eNqdj8tOwzAQRS0EEhV0z9I_kJBXk2ZbCoKuIujemjSTdkhsR-MYqXw95vEFrO6Vjs7iCHGXJnFWZKvy_n3SNEH8UVEWV3V9IRbZqkijsqjry_DzvIqqsiyvxdI5apOiqLJ1vU4X4vMVj4yO5Ns0kkHZ2PFsrCYY5Z69OcCMndzQxNjRMFuW3sx-kC8dmpl6GiCoDbJv4QRG7rwe4RRMq1vraJZN4GjkFjVouUHugAPfojl6vBVXPYwOl397I5Knx_3Dc3Rg6xxjryYmDXxWaaJ-MtVvpvrOVCEz_4fyBTNHYWo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Regresi Spline Polynomial Truncated Biprediktor untuk Identifikasi Perubahan Jumlah Trombosit Pasien Demam Berdarah Dengue</title><source>DOAJ Directory of Open Access Journals</source><creator>Islamiyati, Anna</creator><creatorcontrib>Islamiyati, Anna</creatorcontrib><description>This paper is a longitudinal study using a nonparametric regression model to identify changes in platelet count from dengue fever. Changes in platelet counts were analyzed based on treatment time and hematocrit count factors. The estimator method proposed is spline polynomial truncated bipredictor. Based on the results of the simultaneous model estimation, we obtained GCV = 714.72 and R2 = 95.9%, it means the model is feasible to explain and identify changes in platelet count based on the time of treatment and the number of hematocrit from DBD patients. Based on the data, there are four patterns of platelet change based on time of treatment and three patterns of platelet change based on hematocrit that are different from each other.Abstrak:Paper ini merupakan studi longitudinal dengan menggunakan model regresi nonparametrik untuk mengidentifikasi perubahan jumlah trombosit demam berdarah. Perubahan jumlah trombosit dianalisis berdasarkan faktor waktu perawatan dan jumlah hematokrit. Metode estimator yang diusulkan adalah spline polynomial truncated bi prediktor. Berdasarkan hasil taksiran model simultan diperoleh GCV = 714,72 dan R2 = 95,9%, artinya model layak untuk menjelaskan dan mengidentifikasi perubahan jumlah trombosit berdasarkan waktu perawatan dan jumlah hematokrit pasien DBD. Berdasarkan data, terdapat empat pola perubahan trombosit berdasarkan waktu perawatan dan tiga pola perubahan trombosit berdasarkan hematokrit yang berbeda satu sama lain.</description><identifier>ISSN: 2337-7666</identifier><identifier>EISSN: 2541-6499</identifier><identifier>DOI: 10.24256/jpmipa.v7i2.799</identifier><language>eng</language><ispartof>Al-Khwarizmi (Online), 2019-10, Vol.7 (2), p.97-112</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-6441-0306</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27923,27924</link.rule.ids></links><search><creatorcontrib>Islamiyati, Anna</creatorcontrib><title>Regresi Spline Polynomial Truncated Biprediktor untuk Identifikasi Perubahan Jumlah Trombosit Pasien Demam Berdarah Dengue</title><title>Al-Khwarizmi (Online)</title><description>This paper is a longitudinal study using a nonparametric regression model to identify changes in platelet count from dengue fever. Changes in platelet counts were analyzed based on treatment time and hematocrit count factors. The estimator method proposed is spline polynomial truncated bipredictor. Based on the results of the simultaneous model estimation, we obtained GCV = 714.72 and R2 = 95.9%, it means the model is feasible to explain and identify changes in platelet count based on the time of treatment and the number of hematocrit from DBD patients. Based on the data, there are four patterns of platelet change based on time of treatment and three patterns of platelet change based on hematocrit that are different from each other.Abstrak:Paper ini merupakan studi longitudinal dengan menggunakan model regresi nonparametrik untuk mengidentifikasi perubahan jumlah trombosit demam berdarah. Perubahan jumlah trombosit dianalisis berdasarkan faktor waktu perawatan dan jumlah hematokrit. Metode estimator yang diusulkan adalah spline polynomial truncated bi prediktor. Berdasarkan hasil taksiran model simultan diperoleh GCV = 714,72 dan R2 = 95,9%, artinya model layak untuk menjelaskan dan mengidentifikasi perubahan jumlah trombosit berdasarkan waktu perawatan dan jumlah hematokrit pasien DBD. Berdasarkan data, terdapat empat pola perubahan trombosit berdasarkan waktu perawatan dan tiga pola perubahan trombosit berdasarkan hematokrit yang berbeda satu sama lain.</description><issn>2337-7666</issn><issn>2541-6499</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqdj8tOwzAQRS0EEhV0z9I_kJBXk2ZbCoKuIujemjSTdkhsR-MYqXw95vEFrO6Vjs7iCHGXJnFWZKvy_n3SNEH8UVEWV3V9IRbZqkijsqjry_DzvIqqsiyvxdI5apOiqLJ1vU4X4vMVj4yO5Ns0kkHZ2PFsrCYY5Z69OcCMndzQxNjRMFuW3sx-kC8dmpl6GiCoDbJv4QRG7rwe4RRMq1vraJZN4GjkFjVouUHugAPfojl6vBVXPYwOl397I5Knx_3Dc3Rg6xxjryYmDXxWaaJ-MtVvpvrOVCEz_4fyBTNHYWo</recordid><startdate>20191021</startdate><enddate>20191021</enddate><creator>Islamiyati, Anna</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6441-0306</orcidid></search><sort><creationdate>20191021</creationdate><title>Regresi Spline Polynomial Truncated Biprediktor untuk Identifikasi Perubahan Jumlah Trombosit Pasien Demam Berdarah Dengue</title><author>Islamiyati, Anna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-crossref_primary_10_24256_jpmipa_v7i2_7993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Islamiyati, Anna</creatorcontrib><collection>CrossRef</collection><jtitle>Al-Khwarizmi (Online)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Islamiyati, Anna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regresi Spline Polynomial Truncated Biprediktor untuk Identifikasi Perubahan Jumlah Trombosit Pasien Demam Berdarah Dengue</atitle><jtitle>Al-Khwarizmi (Online)</jtitle><date>2019-10-21</date><risdate>2019</risdate><volume>7</volume><issue>2</issue><spage>97</spage><epage>112</epage><pages>97-112</pages><issn>2337-7666</issn><eissn>2541-6499</eissn><abstract>This paper is a longitudinal study using a nonparametric regression model to identify changes in platelet count from dengue fever. Changes in platelet counts were analyzed based on treatment time and hematocrit count factors. The estimator method proposed is spline polynomial truncated bipredictor. Based on the results of the simultaneous model estimation, we obtained GCV = 714.72 and R2 = 95.9%, it means the model is feasible to explain and identify changes in platelet count based on the time of treatment and the number of hematocrit from DBD patients. Based on the data, there are four patterns of platelet change based on time of treatment and three patterns of platelet change based on hematocrit that are different from each other.Abstrak:Paper ini merupakan studi longitudinal dengan menggunakan model regresi nonparametrik untuk mengidentifikasi perubahan jumlah trombosit demam berdarah. Perubahan jumlah trombosit dianalisis berdasarkan faktor waktu perawatan dan jumlah hematokrit. Metode estimator yang diusulkan adalah spline polynomial truncated bi prediktor. Berdasarkan hasil taksiran model simultan diperoleh GCV = 714,72 dan R2 = 95,9%, artinya model layak untuk menjelaskan dan mengidentifikasi perubahan jumlah trombosit berdasarkan waktu perawatan dan jumlah hematokrit pasien DBD. Berdasarkan data, terdapat empat pola perubahan trombosit berdasarkan waktu perawatan dan tiga pola perubahan trombosit berdasarkan hematokrit yang berbeda satu sama lain.</abstract><doi>10.24256/jpmipa.v7i2.799</doi><orcidid>https://orcid.org/0000-0001-6441-0306</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2337-7666
ispartof Al-Khwarizmi (Online), 2019-10, Vol.7 (2), p.97-112
issn 2337-7666
2541-6499
language eng
recordid cdi_crossref_primary_10_24256_jpmipa_v7i2_799
source DOAJ Directory of Open Access Journals
title Regresi Spline Polynomial Truncated Biprediktor untuk Identifikasi Perubahan Jumlah Trombosit Pasien Demam Berdarah Dengue
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T20%3A03%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regresi%20Spline%20Polynomial%20Truncated%20Biprediktor%20untuk%20Identifikasi%20Perubahan%20Jumlah%20Trombosit%20Pasien%20Demam%20Berdarah%20Dengue&rft.jtitle=Al-Khwarizmi%20(Online)&rft.au=Islamiyati,%20Anna&rft.date=2019-10-21&rft.volume=7&rft.issue=2&rft.spage=97&rft.epage=112&rft.pages=97-112&rft.issn=2337-7666&rft.eissn=2541-6499&rft_id=info:doi/10.24256/jpmipa.v7i2.799&rft_dat=%3Ccrossref%3E10_24256_jpmipa_v7i2_799%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true