Shape optimization of a multi-element hydrofoil for hydrokinetic turbines using response surface methodology

This paper describes the optimization procedure of a two-dimensional multi-element hydrofoil shape during its design for small horizontal axis hydrokinetic turbines using response surface methodology. JavaFoil software was used for describing the hydrofoil performance under several combinations of g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:RE&PQJ 2024-01, Vol.17 (1)
Hauptverfasser: Rubio-Clemente A, Aguilar J, Chica E
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title RE&PQJ
container_volume 17
creator Rubio-Clemente A
Aguilar J
Chica E
description This paper describes the optimization procedure of a two-dimensional multi-element hydrofoil shape during its design for small horizontal axis hydrokinetic turbines using response surface methodology. JavaFoil software was used for describing the hydrofoil performance under several combinations of geometrical parameters, such as the horizontal space (overlap), h, between the drag edge of the main element and the leading edge of the second element; the vertical distance (gap), d, of the flap from the main element trailing edge; and the flap deflection angle, δ. Different experimental designs aiming at the maximization of the lift-to-drag ratio were used. The maximal lift-to-drag ratio was found to be 69.9626 for d, h and δ equal to 2.0%, 18.4619% and 20°, respectively, being δ the factor exerting a considerable influence on the response variable.
doi_str_mv 10.24084/repqj17.223
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_24084_repqj17_223</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_24084_repqj17_223</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1453-f85dfff12abff1af853a5f13eff5ec1972913d306d3e2bb1f6f116bd67422e843</originalsourceid><addsrcrecordid>eNpNkL1OwzAUhS0EElXpxgP4AUjJtfM7ooo_qRIDILFFdnJvY0jiYDtDeHoi2oHlnPMtZ_gYu4Z4K5K4SG4djt-fkG-FkGdsJSAXUSyLj_N_-5JtvDc6TrJMFFCKFeteWzUit2MwvflRwdiBW-KK91MXTIQd9jgE3s6Ns2RNx8m6I32ZAYOpeZicXqbnkzfDgTv0ox08cj85UjXyHkNrG9vZw3zFLkh1HjenXrP3h_u33VO0f3l83t3toxqSVEZUpA0RgVB6SbWgVCmBRKIUayhzUYJsZJw1EoXWQBkBZLrJ8kQILBK5ZjfH39pZ7x1SNTrTKzdXEFd_sqqTrGqRJX8BtyRh6A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Shape optimization of a multi-element hydrofoil for hydrokinetic turbines using response surface methodology</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Rubio-Clemente A ; Aguilar J ; Chica E</creator><creatorcontrib>Rubio-Clemente A ; Aguilar J ; Chica E</creatorcontrib><description>This paper describes the optimization procedure of a two-dimensional multi-element hydrofoil shape during its design for small horizontal axis hydrokinetic turbines using response surface methodology. JavaFoil software was used for describing the hydrofoil performance under several combinations of geometrical parameters, such as the horizontal space (overlap), h, between the drag edge of the main element and the leading edge of the second element; the vertical distance (gap), d, of the flap from the main element trailing edge; and the flap deflection angle, δ. Different experimental designs aiming at the maximization of the lift-to-drag ratio were used. The maximal lift-to-drag ratio was found to be 69.9626 for d, h and δ equal to 2.0%, 18.4619% and 20°, respectively, being δ the factor exerting a considerable influence on the response variable.</description><identifier>ISSN: 2172-038X</identifier><identifier>EISSN: 2172-038X</identifier><identifier>DOI: 10.24084/repqj17.223</identifier><language>eng</language><ispartof>RE&amp;PQJ, 2024-01, Vol.17 (1)</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Rubio-Clemente A</creatorcontrib><creatorcontrib>Aguilar J</creatorcontrib><creatorcontrib>Chica E</creatorcontrib><title>Shape optimization of a multi-element hydrofoil for hydrokinetic turbines using response surface methodology</title><title>RE&amp;PQJ</title><description>This paper describes the optimization procedure of a two-dimensional multi-element hydrofoil shape during its design for small horizontal axis hydrokinetic turbines using response surface methodology. JavaFoil software was used for describing the hydrofoil performance under several combinations of geometrical parameters, such as the horizontal space (overlap), h, between the drag edge of the main element and the leading edge of the second element; the vertical distance (gap), d, of the flap from the main element trailing edge; and the flap deflection angle, δ. Different experimental designs aiming at the maximization of the lift-to-drag ratio were used. The maximal lift-to-drag ratio was found to be 69.9626 for d, h and δ equal to 2.0%, 18.4619% and 20°, respectively, being δ the factor exerting a considerable influence on the response variable.</description><issn>2172-038X</issn><issn>2172-038X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkL1OwzAUhS0EElXpxgP4AUjJtfM7ooo_qRIDILFFdnJvY0jiYDtDeHoi2oHlnPMtZ_gYu4Z4K5K4SG4djt-fkG-FkGdsJSAXUSyLj_N_-5JtvDc6TrJMFFCKFeteWzUit2MwvflRwdiBW-KK91MXTIQd9jgE3s6Ns2RNx8m6I32ZAYOpeZicXqbnkzfDgTv0ox08cj85UjXyHkNrG9vZw3zFLkh1HjenXrP3h_u33VO0f3l83t3toxqSVEZUpA0RgVB6SbWgVCmBRKIUayhzUYJsZJw1EoXWQBkBZLrJ8kQILBK5ZjfH39pZ7x1SNTrTKzdXEFd_sqqTrGqRJX8BtyRh6A</recordid><startdate>20240108</startdate><enddate>20240108</enddate><creator>Rubio-Clemente A</creator><creator>Aguilar J</creator><creator>Chica E</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240108</creationdate><title>Shape optimization of a multi-element hydrofoil for hydrokinetic turbines using response surface methodology</title><author>Rubio-Clemente A ; Aguilar J ; Chica E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1453-f85dfff12abff1af853a5f13eff5ec1972913d306d3e2bb1f6f116bd67422e843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Rubio-Clemente A</creatorcontrib><creatorcontrib>Aguilar J</creatorcontrib><creatorcontrib>Chica E</creatorcontrib><collection>CrossRef</collection><jtitle>RE&amp;PQJ</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rubio-Clemente A</au><au>Aguilar J</au><au>Chica E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shape optimization of a multi-element hydrofoil for hydrokinetic turbines using response surface methodology</atitle><jtitle>RE&amp;PQJ</jtitle><date>2024-01-08</date><risdate>2024</risdate><volume>17</volume><issue>1</issue><issn>2172-038X</issn><eissn>2172-038X</eissn><abstract>This paper describes the optimization procedure of a two-dimensional multi-element hydrofoil shape during its design for small horizontal axis hydrokinetic turbines using response surface methodology. JavaFoil software was used for describing the hydrofoil performance under several combinations of geometrical parameters, such as the horizontal space (overlap), h, between the drag edge of the main element and the leading edge of the second element; the vertical distance (gap), d, of the flap from the main element trailing edge; and the flap deflection angle, δ. Different experimental designs aiming at the maximization of the lift-to-drag ratio were used. The maximal lift-to-drag ratio was found to be 69.9626 for d, h and δ equal to 2.0%, 18.4619% and 20°, respectively, being δ the factor exerting a considerable influence on the response variable.</abstract><doi>10.24084/repqj17.223</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2172-038X
ispartof RE&PQJ, 2024-01, Vol.17 (1)
issn 2172-038X
2172-038X
language eng
recordid cdi_crossref_primary_10_24084_repqj17_223
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
title Shape optimization of a multi-element hydrofoil for hydrokinetic turbines using response surface methodology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T17%3A12%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shape%20optimization%20of%20a%20multi-element%20hydrofoil%20for%20hydrokinetic%20turbines%20using%20response%20surface%20methodology&rft.jtitle=RE&PQJ&rft.au=Rubio-Clemente%20A&rft.date=2024-01-08&rft.volume=17&rft.issue=1&rft.issn=2172-038X&rft.eissn=2172-038X&rft_id=info:doi/10.24084/repqj17.223&rft_dat=%3Ccrossref%3E10_24084_repqj17_223%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true