Data Driven Model for a Fuel Cell stack development in a complex Multi-source Hybrid Renewable Energy System

Fuel cells based on polymer electrolyte membrane are considered as the most hopeful clean power technology. The operating principles of polymer electrolyte membrane fuel cells (PEMFC) system involve electrochemistry, thermodynamics and hydrodynamics theory for which it is difficult to establish a ma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:RE&PQJ 2024-01, Vol.8 (1)
Hauptverfasser: G. Napoli, M. Ferraro, G. Brunaccini, G. Dispenza, V. Antonucci
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title RE&PQJ
container_volume 8
creator G. Napoli
M. Ferraro
G. Brunaccini
G. Dispenza
V. Antonucci
description Fuel cells based on polymer electrolyte membrane are considered as the most hopeful clean power technology. The operating principles of polymer electrolyte membrane fuel cells (PEMFC) system involve electrochemistry, thermodynamics and hydrodynamics theory for which it is difficult to establish a mathematical model. In this paper a nonlinear data driven model of a PEMFC stack is developed using Neural Networks (NNs). The model presented is a black-box model, based on a set of measurable exogenous inputs and is able to predict the output voltage and cathode temperature of a high power module working at the CNR- ITAE. A 5 kW PEM fuel cell stack is employed to experimentally investigate the dynamic behaviour and to reveal the most influential factors.
doi_str_mv 10.24084/repqj08.549
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_24084_repqj08_549</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_24084_repqj08_549</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1459-c64e7a157751b7f3957d5baf001cf9a274c69bf772b2de8e41d5c9ef2e5242543</originalsourceid><addsrcrecordid>eNpNkLtOwzAYRi0EElXpxgP4AUixHTuOR5S2FKkVEheJLbKd3yjgXLDT0rw9FXRg-s7w6QwHoWtK5oyTnN8G6L8-SD4XXJ2hCaOSJSTN387_8SWaxVgbwrOM5VSxCfILPWi8CPUeWrztKvDYdQFrvNodsQDvcRy0_cQV7MF3fQPtgOv2eLBd03s44O3OD3USu12wgNejCXWFn6CFb2084GUL4X3Ez2McoLlCF077CLPTTtHravlSrJPN4_1DcbdJLOVCJTbjIDUVUgpqpEuVkJUw2hFCrVOaSW4zZZyUzLAKcuC0ElaBYyAYZ4KnU3Tz57WhizGAK_tQNzqMJSXlb6zyFKs8xkp_AD26Xqc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Data Driven Model for a Fuel Cell stack development in a complex Multi-source Hybrid Renewable Energy System</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>G. Napoli ; M. Ferraro ; G. Brunaccini ; G. Dispenza ; V. Antonucci</creator><creatorcontrib>G. Napoli ; M. Ferraro ; G. Brunaccini ; G. Dispenza ; V. Antonucci</creatorcontrib><description>Fuel cells based on polymer electrolyte membrane are considered as the most hopeful clean power technology. The operating principles of polymer electrolyte membrane fuel cells (PEMFC) system involve electrochemistry, thermodynamics and hydrodynamics theory for which it is difficult to establish a mathematical model. In this paper a nonlinear data driven model of a PEMFC stack is developed using Neural Networks (NNs). The model presented is a black-box model, based on a set of measurable exogenous inputs and is able to predict the output voltage and cathode temperature of a high power module working at the CNR- ITAE. A 5 kW PEM fuel cell stack is employed to experimentally investigate the dynamic behaviour and to reveal the most influential factors.</description><identifier>ISSN: 2172-038X</identifier><identifier>EISSN: 2172-038X</identifier><identifier>DOI: 10.24084/repqj08.549</identifier><language>eng</language><ispartof>RE&amp;PQJ, 2024-01, Vol.8 (1)</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>G. Napoli</creatorcontrib><creatorcontrib>M. Ferraro</creatorcontrib><creatorcontrib>G. Brunaccini</creatorcontrib><creatorcontrib>G. Dispenza</creatorcontrib><creatorcontrib>V. Antonucci</creatorcontrib><title>Data Driven Model for a Fuel Cell stack development in a complex Multi-source Hybrid Renewable Energy System</title><title>RE&amp;PQJ</title><description>Fuel cells based on polymer electrolyte membrane are considered as the most hopeful clean power technology. The operating principles of polymer electrolyte membrane fuel cells (PEMFC) system involve electrochemistry, thermodynamics and hydrodynamics theory for which it is difficult to establish a mathematical model. In this paper a nonlinear data driven model of a PEMFC stack is developed using Neural Networks (NNs). The model presented is a black-box model, based on a set of measurable exogenous inputs and is able to predict the output voltage and cathode temperature of a high power module working at the CNR- ITAE. A 5 kW PEM fuel cell stack is employed to experimentally investigate the dynamic behaviour and to reveal the most influential factors.</description><issn>2172-038X</issn><issn>2172-038X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkLtOwzAYRi0EElXpxgP4AUixHTuOR5S2FKkVEheJLbKd3yjgXLDT0rw9FXRg-s7w6QwHoWtK5oyTnN8G6L8-SD4XXJ2hCaOSJSTN387_8SWaxVgbwrOM5VSxCfILPWi8CPUeWrztKvDYdQFrvNodsQDvcRy0_cQV7MF3fQPtgOv2eLBd03s44O3OD3USu12wgNejCXWFn6CFb2084GUL4X3Ez2McoLlCF077CLPTTtHravlSrJPN4_1DcbdJLOVCJTbjIDUVUgpqpEuVkJUw2hFCrVOaSW4zZZyUzLAKcuC0ElaBYyAYZ4KnU3Tz57WhizGAK_tQNzqMJSXlb6zyFKs8xkp_AD26Xqc</recordid><startdate>20240124</startdate><enddate>20240124</enddate><creator>G. Napoli</creator><creator>M. Ferraro</creator><creator>G. Brunaccini</creator><creator>G. Dispenza</creator><creator>V. Antonucci</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240124</creationdate><title>Data Driven Model for a Fuel Cell stack development in a complex Multi-source Hybrid Renewable Energy System</title><author>G. Napoli ; M. Ferraro ; G. Brunaccini ; G. Dispenza ; V. Antonucci</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1459-c64e7a157751b7f3957d5baf001cf9a274c69bf772b2de8e41d5c9ef2e5242543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>online_resources</toplevel><creatorcontrib>G. Napoli</creatorcontrib><creatorcontrib>M. Ferraro</creatorcontrib><creatorcontrib>G. Brunaccini</creatorcontrib><creatorcontrib>G. Dispenza</creatorcontrib><creatorcontrib>V. Antonucci</creatorcontrib><collection>CrossRef</collection><jtitle>RE&amp;PQJ</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>G. Napoli</au><au>M. Ferraro</au><au>G. Brunaccini</au><au>G. Dispenza</au><au>V. Antonucci</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data Driven Model for a Fuel Cell stack development in a complex Multi-source Hybrid Renewable Energy System</atitle><jtitle>RE&amp;PQJ</jtitle><date>2024-01-24</date><risdate>2024</risdate><volume>8</volume><issue>1</issue><issn>2172-038X</issn><eissn>2172-038X</eissn><abstract>Fuel cells based on polymer electrolyte membrane are considered as the most hopeful clean power technology. The operating principles of polymer electrolyte membrane fuel cells (PEMFC) system involve electrochemistry, thermodynamics and hydrodynamics theory for which it is difficult to establish a mathematical model. In this paper a nonlinear data driven model of a PEMFC stack is developed using Neural Networks (NNs). The model presented is a black-box model, based on a set of measurable exogenous inputs and is able to predict the output voltage and cathode temperature of a high power module working at the CNR- ITAE. A 5 kW PEM fuel cell stack is employed to experimentally investigate the dynamic behaviour and to reveal the most influential factors.</abstract><doi>10.24084/repqj08.549</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2172-038X
ispartof RE&PQJ, 2024-01, Vol.8 (1)
issn 2172-038X
2172-038X
language eng
recordid cdi_crossref_primary_10_24084_repqj08_549
source EZB-FREE-00999 freely available EZB journals
title Data Driven Model for a Fuel Cell stack development in a complex Multi-source Hybrid Renewable Energy System
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T10%3A50%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data%20Driven%20Model%20for%20a%20Fuel%20Cell%20stack%20development%20in%20a%20complex%20Multi-source%20Hybrid%20Renewable%20Energy%20System&rft.jtitle=RE&PQJ&rft.au=G.%20Napoli&rft.date=2024-01-24&rft.volume=8&rft.issue=1&rft.issn=2172-038X&rft.eissn=2172-038X&rft_id=info:doi/10.24084/repqj08.549&rft_dat=%3Ccrossref%3E10_24084_repqj08_549%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true