Identification of microorganisms by Fourier-transform infrared spectroscopy

The need for novel techniques of rapid identification of pathogenic microorganisms arises from the massive spread of drug-resistant nosocomial strains and the emergence of centers for biohazard control. Fourier-transform infrared spectroscopy is a promising alternative to mass spectrometry as it is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of RSMU 2018-01 ((4)2018), p.50-57
Hauptverfasser: Suntsova, A. Yu, Guliev, R. R., Popov, D. A., Vostrikova, T. Yu, Dubodelov, D. V., Shchegolikhin, A. N., Laypanov, B. K., Priputnevich, T. V., Shevelev, A. B., Kurochkin, I. N.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 57
container_issue (4)2018
container_start_page 50
container_title Bulletin of RSMU
container_volume
creator Suntsova, A. Yu
Guliev, R. R.
Popov, D. A.
Vostrikova, T. Yu
Dubodelov, D. V.
Shchegolikhin, A. N.
Laypanov, B. K.
Priputnevich, T. V.
Shevelev, A. B.
Kurochkin, I. N.
description The need for novel techniques of rapid identification of pathogenic microorganisms arises from the massive spread of drug-resistant nosocomial strains and the emergence of centers for biohazard control. Fourier-transform infrared spectroscopy is a promising alternative to mass spectrometry as it is cost-effective, fast and suitable for field use. The aim of this work was to propose an algorithm for the identification of microorganisms in pure cultures based on the analysis of their Fourier transform infrared spectra. The algorithm is based on the automated principal component analysis of infrared spectra. Unlike its analogues described in the literature, the algorithm is capable of identifying bacteria regardless of the culture medium or growth phase. The training sample included the most prevalent causative agents of infections and sepsis in humans: Staphylococcus aureus (n = 67), Enterococcus faecalis (n = 10), Enterococcus faecium (n = 10), Klebsiella pneumoniae (n = 10), Escherichia coli (n = 10), Serratia marcescens (n = 10), Enterobacter cloacae (n = 10), Acinetobacter baumannii (n = 10), Pseudomonas aeruginosa (n = 10), and Candida albicans (n = 10). The model we built successfully passed a series of blind tests involving clinical isolates of 10 methicillin-resistant (MRSA) and 10 methicillin-sensitive (MSSA) Staphylococcus aureus strains as well as pair mixes of these cultures with clinical isolates of Pseudomonas aeruginosa, Escherichia coli, and Klebsiella pneumoniae.
doi_str_mv 10.24075/brsmu.2018.046
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_24075_brsmu_2018_046</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_24075_brsmu_2018_046</sourcerecordid><originalsourceid>FETCH-LOGICAL-c282t-9557f1eeda44287d81dbc1e207e42735f0d058a7d21c8d8d0412a6283f1dc4ab3</originalsourceid><addsrcrecordid>eNot0L1OwzAUBWALgURVOrPmBZJeX9uxO6KKQkUlFpgjxz_IiMTVdTrk7WkL0znT0dHH2COHBiVote6pDKcGgZsGZHvDFqgk1hxB3l46QM1hI-_ZqpRvABCCi1bpBXvb-zBOKSZnp5THKsdqSI5ypi87pjKUqp-rXT5RClRPZMcSMw1VGiNZCr4qx-AmysXl4_zA7qL9KWH1n0v2uXv-2L7Wh_eX_fbpUDs0ONUbpXTkIXgrJRrtDfe94wFBB4laqAgelLHaI3fGGw-So23RiMi9k7YXS7b-2z3_LIVC7I6UBktzx6G7cnRXju7C0Z05xC8JWlW1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Identification of microorganisms by Fourier-transform infrared spectroscopy</title><source>DOAJ Directory of Open Access Journals</source><creator>Suntsova, A. Yu ; Guliev, R. R. ; Popov, D. A. ; Vostrikova, T. Yu ; Dubodelov, D. V. ; Shchegolikhin, A. N. ; Laypanov, B. K. ; Priputnevich, T. V. ; Shevelev, A. B. ; Kurochkin, I. N.</creator><creatorcontrib>Suntsova, A. Yu ; Guliev, R. R. ; Popov, D. A. ; Vostrikova, T. Yu ; Dubodelov, D. V. ; Shchegolikhin, A. N. ; Laypanov, B. K. ; Priputnevich, T. V. ; Shevelev, A. B. ; Kurochkin, I. N.</creatorcontrib><description>The need for novel techniques of rapid identification of pathogenic microorganisms arises from the massive spread of drug-resistant nosocomial strains and the emergence of centers for biohazard control. Fourier-transform infrared spectroscopy is a promising alternative to mass spectrometry as it is cost-effective, fast and suitable for field use. The aim of this work was to propose an algorithm for the identification of microorganisms in pure cultures based on the analysis of their Fourier transform infrared spectra. The algorithm is based on the automated principal component analysis of infrared spectra. Unlike its analogues described in the literature, the algorithm is capable of identifying bacteria regardless of the culture medium or growth phase. The training sample included the most prevalent causative agents of infections and sepsis in humans: Staphylococcus aureus (n = 67), Enterococcus faecalis (n = 10), Enterococcus faecium (n = 10), Klebsiella pneumoniae (n = 10), Escherichia coli (n = 10), Serratia marcescens (n = 10), Enterobacter cloacae (n = 10), Acinetobacter baumannii (n = 10), Pseudomonas aeruginosa (n = 10), and Candida albicans (n = 10). The model we built successfully passed a series of blind tests involving clinical isolates of 10 methicillin-resistant (MRSA) and 10 methicillin-sensitive (MSSA) Staphylococcus aureus strains as well as pair mixes of these cultures with clinical isolates of Pseudomonas aeruginosa, Escherichia coli, and Klebsiella pneumoniae.</description><identifier>ISSN: 2500-1094</identifier><identifier>EISSN: 2542-1204</identifier><identifier>DOI: 10.24075/brsmu.2018.046</identifier><language>eng</language><ispartof>Bulletin of RSMU, 2018-01 ((4)2018), p.50-57</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c282t-9557f1eeda44287d81dbc1e207e42735f0d058a7d21c8d8d0412a6283f1dc4ab3</citedby><cites>FETCH-LOGICAL-c282t-9557f1eeda44287d81dbc1e207e42735f0d058a7d21c8d8d0412a6283f1dc4ab3</cites><orcidid>0000-0002-9403-4003 ; 0000-0003-1473-1982 ; 0000-0003-3093-5731 ; 0000-0003-3564-7405</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27903,27904</link.rule.ids></links><search><creatorcontrib>Suntsova, A. Yu</creatorcontrib><creatorcontrib>Guliev, R. R.</creatorcontrib><creatorcontrib>Popov, D. A.</creatorcontrib><creatorcontrib>Vostrikova, T. Yu</creatorcontrib><creatorcontrib>Dubodelov, D. V.</creatorcontrib><creatorcontrib>Shchegolikhin, A. N.</creatorcontrib><creatorcontrib>Laypanov, B. K.</creatorcontrib><creatorcontrib>Priputnevich, T. V.</creatorcontrib><creatorcontrib>Shevelev, A. B.</creatorcontrib><creatorcontrib>Kurochkin, I. N.</creatorcontrib><title>Identification of microorganisms by Fourier-transform infrared spectroscopy</title><title>Bulletin of RSMU</title><description>The need for novel techniques of rapid identification of pathogenic microorganisms arises from the massive spread of drug-resistant nosocomial strains and the emergence of centers for biohazard control. Fourier-transform infrared spectroscopy is a promising alternative to mass spectrometry as it is cost-effective, fast and suitable for field use. The aim of this work was to propose an algorithm for the identification of microorganisms in pure cultures based on the analysis of their Fourier transform infrared spectra. The algorithm is based on the automated principal component analysis of infrared spectra. Unlike its analogues described in the literature, the algorithm is capable of identifying bacteria regardless of the culture medium or growth phase. The training sample included the most prevalent causative agents of infections and sepsis in humans: Staphylococcus aureus (n = 67), Enterococcus faecalis (n = 10), Enterococcus faecium (n = 10), Klebsiella pneumoniae (n = 10), Escherichia coli (n = 10), Serratia marcescens (n = 10), Enterobacter cloacae (n = 10), Acinetobacter baumannii (n = 10), Pseudomonas aeruginosa (n = 10), and Candida albicans (n = 10). The model we built successfully passed a series of blind tests involving clinical isolates of 10 methicillin-resistant (MRSA) and 10 methicillin-sensitive (MSSA) Staphylococcus aureus strains as well as pair mixes of these cultures with clinical isolates of Pseudomonas aeruginosa, Escherichia coli, and Klebsiella pneumoniae.</description><issn>2500-1094</issn><issn>2542-1204</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNot0L1OwzAUBWALgURVOrPmBZJeX9uxO6KKQkUlFpgjxz_IiMTVdTrk7WkL0znT0dHH2COHBiVote6pDKcGgZsGZHvDFqgk1hxB3l46QM1hI-_ZqpRvABCCi1bpBXvb-zBOKSZnp5THKsdqSI5ypi87pjKUqp-rXT5RClRPZMcSMw1VGiNZCr4qx-AmysXl4_zA7qL9KWH1n0v2uXv-2L7Wh_eX_fbpUDs0ONUbpXTkIXgrJRrtDfe94wFBB4laqAgelLHaI3fGGw-So23RiMi9k7YXS7b-2z3_LIVC7I6UBktzx6G7cnRXju7C0Z05xC8JWlW1</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Suntsova, A. Yu</creator><creator>Guliev, R. R.</creator><creator>Popov, D. A.</creator><creator>Vostrikova, T. Yu</creator><creator>Dubodelov, D. V.</creator><creator>Shchegolikhin, A. N.</creator><creator>Laypanov, B. K.</creator><creator>Priputnevich, T. V.</creator><creator>Shevelev, A. B.</creator><creator>Kurochkin, I. N.</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9403-4003</orcidid><orcidid>https://orcid.org/0000-0003-1473-1982</orcidid><orcidid>https://orcid.org/0000-0003-3093-5731</orcidid><orcidid>https://orcid.org/0000-0003-3564-7405</orcidid></search><sort><creationdate>20180101</creationdate><title>Identification of microorganisms by Fourier-transform infrared spectroscopy</title><author>Suntsova, A. Yu ; Guliev, R. R. ; Popov, D. A. ; Vostrikova, T. Yu ; Dubodelov, D. V. ; Shchegolikhin, A. N. ; Laypanov, B. K. ; Priputnevich, T. V. ; Shevelev, A. B. ; Kurochkin, I. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c282t-9557f1eeda44287d81dbc1e207e42735f0d058a7d21c8d8d0412a6283f1dc4ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Suntsova, A. Yu</creatorcontrib><creatorcontrib>Guliev, R. R.</creatorcontrib><creatorcontrib>Popov, D. A.</creatorcontrib><creatorcontrib>Vostrikova, T. Yu</creatorcontrib><creatorcontrib>Dubodelov, D. V.</creatorcontrib><creatorcontrib>Shchegolikhin, A. N.</creatorcontrib><creatorcontrib>Laypanov, B. K.</creatorcontrib><creatorcontrib>Priputnevich, T. V.</creatorcontrib><creatorcontrib>Shevelev, A. B.</creatorcontrib><creatorcontrib>Kurochkin, I. N.</creatorcontrib><collection>CrossRef</collection><jtitle>Bulletin of RSMU</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Suntsova, A. Yu</au><au>Guliev, R. R.</au><au>Popov, D. A.</au><au>Vostrikova, T. Yu</au><au>Dubodelov, D. V.</au><au>Shchegolikhin, A. N.</au><au>Laypanov, B. K.</au><au>Priputnevich, T. V.</au><au>Shevelev, A. B.</au><au>Kurochkin, I. N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of microorganisms by Fourier-transform infrared spectroscopy</atitle><jtitle>Bulletin of RSMU</jtitle><date>2018-01-01</date><risdate>2018</risdate><issue>(4)2018</issue><spage>50</spage><epage>57</epage><pages>50-57</pages><issn>2500-1094</issn><eissn>2542-1204</eissn><abstract>The need for novel techniques of rapid identification of pathogenic microorganisms arises from the massive spread of drug-resistant nosocomial strains and the emergence of centers for biohazard control. Fourier-transform infrared spectroscopy is a promising alternative to mass spectrometry as it is cost-effective, fast and suitable for field use. The aim of this work was to propose an algorithm for the identification of microorganisms in pure cultures based on the analysis of their Fourier transform infrared spectra. The algorithm is based on the automated principal component analysis of infrared spectra. Unlike its analogues described in the literature, the algorithm is capable of identifying bacteria regardless of the culture medium or growth phase. The training sample included the most prevalent causative agents of infections and sepsis in humans: Staphylococcus aureus (n = 67), Enterococcus faecalis (n = 10), Enterococcus faecium (n = 10), Klebsiella pneumoniae (n = 10), Escherichia coli (n = 10), Serratia marcescens (n = 10), Enterobacter cloacae (n = 10), Acinetobacter baumannii (n = 10), Pseudomonas aeruginosa (n = 10), and Candida albicans (n = 10). The model we built successfully passed a series of blind tests involving clinical isolates of 10 methicillin-resistant (MRSA) and 10 methicillin-sensitive (MSSA) Staphylococcus aureus strains as well as pair mixes of these cultures with clinical isolates of Pseudomonas aeruginosa, Escherichia coli, and Klebsiella pneumoniae.</abstract><doi>10.24075/brsmu.2018.046</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-9403-4003</orcidid><orcidid>https://orcid.org/0000-0003-1473-1982</orcidid><orcidid>https://orcid.org/0000-0003-3093-5731</orcidid><orcidid>https://orcid.org/0000-0003-3564-7405</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2500-1094
ispartof Bulletin of RSMU, 2018-01 ((4)2018), p.50-57
issn 2500-1094
2542-1204
language eng
recordid cdi_crossref_primary_10_24075_brsmu_2018_046
source DOAJ Directory of Open Access Journals
title Identification of microorganisms by Fourier-transform infrared spectroscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T01%3A18%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20microorganisms%20by%20Fourier-transform%20infrared%20spectroscopy&rft.jtitle=Bulletin%20of%20RSMU&rft.au=Suntsova,%20A.%20Yu&rft.date=2018-01-01&rft.issue=(4)2018&rft.spage=50&rft.epage=57&rft.pages=50-57&rft.issn=2500-1094&rft.eissn=2542-1204&rft_id=info:doi/10.24075/brsmu.2018.046&rft_dat=%3Ccrossref%3E10_24075_brsmu_2018_046%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true