Machine learning-based area estimation using data measured under walking conditions

This study examines the accuracy and measurement costs associated with room-level indoor-area estimation using a wireless LAN. Utilizing fingerprinting, a method that compares user-measured access point (AP) information with pre-existing AP data from service providers, this study introduces a cost-e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEICE COMMUNICATIONS EXPRESS 2024/06/01, Vol.13(6), pp.172-175
Hauptverfasser: Nakayama, Shota, Aikawa, Satoru, Yamamoto, Shinichiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 175
container_issue 6
container_start_page 172
container_title IEICE COMMUNICATIONS EXPRESS
container_volume 13
creator Nakayama, Shota
Aikawa, Satoru
Yamamoto, Shinichiro
description This study examines the accuracy and measurement costs associated with room-level indoor-area estimation using a wireless LAN. Utilizing fingerprinting, a method that compares user-measured access point (AP) information with pre-existing AP data from service providers, this study introduces a cost-effective approach. Our proposed machine learning (ML)-based method leverages data collected by users while traversing different locations within an area, thereby significantly reducing the measurement time. Furthermore, this study contrasts the effectiveness of convolutional neural networks (CNN) and support vector machines (SVM) in area estimation using this novel measurement technique. Both CNN and SVM demonstrated comparable accuracy, with SVM exhibiting a shorter processing time.
doi_str_mv 10.23919/comex.2024SPL0012
format Article
fullrecord <record><control><sourceid>jstage_cross</sourceid><recordid>TN_cdi_crossref_primary_10_23919_comex_2024SPL0012</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>article_comex_13_6_13_2024SPL0012_article_char_en</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-f3086e645e7496faf983f0978b03ba3d435ab54be246c0004ff682b36861d3353</originalsourceid><addsrcrecordid>eNpNkM1OwzAQhC0EElXpC3DyC6TYXsdNjqiCgtQKpMLZ2iTrNiV1kJ0KeHvSH0EvuyvNfKvRMHYrxVhBLvO7st3S91gJpZevcyGkumADJbNJIiSYy7P7mo1i3AghQEnQKh2w5QLLde2JN4TB136VFBip4hgIOcWu3mJXt57vYq_xCjvkW8K4C71n5ysK_Aubj71Wtr6q9954w64cNpFGpz1k748Pb9OnZP4ye57ez5MS0rxLHIjMkNEpTXRuHLo8AyfySVYIKBAqDSkWqS5IaVP2mbVzJlMFmMzICiCFIVPHv2VoYwzk7Gfo84YfK4U9NGMPzdizZnpodoQ2scMV_SEYurps6ERIsGY_zsh_xxqDJQ-_0Ilx8g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Machine learning-based area estimation using data measured under walking conditions</title><source>J-STAGE Free</source><source>Open Access Titles of Japan</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Nakayama, Shota ; Aikawa, Satoru ; Yamamoto, Shinichiro</creator><creatorcontrib>Nakayama, Shota ; Aikawa, Satoru ; Yamamoto, Shinichiro</creatorcontrib><description>This study examines the accuracy and measurement costs associated with room-level indoor-area estimation using a wireless LAN. Utilizing fingerprinting, a method that compares user-measured access point (AP) information with pre-existing AP data from service providers, this study introduces a cost-effective approach. Our proposed machine learning (ML)-based method leverages data collected by users while traversing different locations within an area, thereby significantly reducing the measurement time. Furthermore, this study contrasts the effectiveness of convolutional neural networks (CNN) and support vector machines (SVM) in area estimation using this novel measurement technique. Both CNN and SVM demonstrated comparable accuracy, with SVM exhibiting a shorter processing time.</description><identifier>ISSN: 2187-0136</identifier><identifier>EISSN: 2187-0136</identifier><identifier>DOI: 10.23919/comex.2024SPL0012</identifier><language>eng</language><publisher>The Institute of Electronics, Information and Communication Engineers</publisher><subject>area estimation ; CNN ; fingerprinting ; indoor location estimation ; SVM</subject><ispartof>IEICE Communications Express, 2024/06/01, Vol.13(6), pp.172-175</ispartof><rights>2024 The Institute of Electronics, Information and Communication Engineers</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-f3086e645e7496faf983f0978b03ba3d435ab54be246c0004ff682b36861d3353</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1876,27903,27904</link.rule.ids></links><search><creatorcontrib>Nakayama, Shota</creatorcontrib><creatorcontrib>Aikawa, Satoru</creatorcontrib><creatorcontrib>Yamamoto, Shinichiro</creatorcontrib><title>Machine learning-based area estimation using data measured under walking conditions</title><title>IEICE COMMUNICATIONS EXPRESS</title><addtitle>IEICE ComEX</addtitle><description>This study examines the accuracy and measurement costs associated with room-level indoor-area estimation using a wireless LAN. Utilizing fingerprinting, a method that compares user-measured access point (AP) information with pre-existing AP data from service providers, this study introduces a cost-effective approach. Our proposed machine learning (ML)-based method leverages data collected by users while traversing different locations within an area, thereby significantly reducing the measurement time. Furthermore, this study contrasts the effectiveness of convolutional neural networks (CNN) and support vector machines (SVM) in area estimation using this novel measurement technique. Both CNN and SVM demonstrated comparable accuracy, with SVM exhibiting a shorter processing time.</description><subject>area estimation</subject><subject>CNN</subject><subject>fingerprinting</subject><subject>indoor location estimation</subject><subject>SVM</subject><issn>2187-0136</issn><issn>2187-0136</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkM1OwzAQhC0EElXpC3DyC6TYXsdNjqiCgtQKpMLZ2iTrNiV1kJ0KeHvSH0EvuyvNfKvRMHYrxVhBLvO7st3S91gJpZevcyGkumADJbNJIiSYy7P7mo1i3AghQEnQKh2w5QLLde2JN4TB136VFBip4hgIOcWu3mJXt57vYq_xCjvkW8K4C71n5ysK_Aubj71Wtr6q9954w64cNpFGpz1k748Pb9OnZP4ye57ez5MS0rxLHIjMkNEpTXRuHLo8AyfySVYIKBAqDSkWqS5IaVP2mbVzJlMFmMzICiCFIVPHv2VoYwzk7Gfo84YfK4U9NGMPzdizZnpodoQ2scMV_SEYurps6ERIsGY_zsh_xxqDJQ-_0Ilx8g</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Nakayama, Shota</creator><creator>Aikawa, Satoru</creator><creator>Yamamoto, Shinichiro</creator><general>The Institute of Electronics, Information and Communication Engineers</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240601</creationdate><title>Machine learning-based area estimation using data measured under walking conditions</title><author>Nakayama, Shota ; Aikawa, Satoru ; Yamamoto, Shinichiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-f3086e645e7496faf983f0978b03ba3d435ab54be246c0004ff682b36861d3353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>area estimation</topic><topic>CNN</topic><topic>fingerprinting</topic><topic>indoor location estimation</topic><topic>SVM</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nakayama, Shota</creatorcontrib><creatorcontrib>Aikawa, Satoru</creatorcontrib><creatorcontrib>Yamamoto, Shinichiro</creatorcontrib><collection>CrossRef</collection><jtitle>IEICE COMMUNICATIONS EXPRESS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nakayama, Shota</au><au>Aikawa, Satoru</au><au>Yamamoto, Shinichiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine learning-based area estimation using data measured under walking conditions</atitle><jtitle>IEICE COMMUNICATIONS EXPRESS</jtitle><addtitle>IEICE ComEX</addtitle><date>2024-06-01</date><risdate>2024</risdate><volume>13</volume><issue>6</issue><spage>172</spage><epage>175</epage><pages>172-175</pages><issn>2187-0136</issn><eissn>2187-0136</eissn><abstract>This study examines the accuracy and measurement costs associated with room-level indoor-area estimation using a wireless LAN. Utilizing fingerprinting, a method that compares user-measured access point (AP) information with pre-existing AP data from service providers, this study introduces a cost-effective approach. Our proposed machine learning (ML)-based method leverages data collected by users while traversing different locations within an area, thereby significantly reducing the measurement time. Furthermore, this study contrasts the effectiveness of convolutional neural networks (CNN) and support vector machines (SVM) in area estimation using this novel measurement technique. Both CNN and SVM demonstrated comparable accuracy, with SVM exhibiting a shorter processing time.</abstract><pub>The Institute of Electronics, Information and Communication Engineers</pub><doi>10.23919/comex.2024SPL0012</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2187-0136
ispartof IEICE Communications Express, 2024/06/01, Vol.13(6), pp.172-175
issn 2187-0136
2187-0136
language eng
recordid cdi_crossref_primary_10_23919_comex_2024SPL0012
source J-STAGE Free; Open Access Titles of Japan; EZB-FREE-00999 freely available EZB journals
subjects area estimation
CNN
fingerprinting
indoor location estimation
SVM
title Machine learning-based area estimation using data measured under walking conditions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T19%3A10%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstage_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20learning-based%20area%20estimation%20using%20data%20measured%20under%20walking%20conditions&rft.jtitle=IEICE%20COMMUNICATIONS%20EXPRESS&rft.au=Nakayama,%20Shota&rft.date=2024-06-01&rft.volume=13&rft.issue=6&rft.spage=172&rft.epage=175&rft.pages=172-175&rft.issn=2187-0136&rft.eissn=2187-0136&rft_id=info:doi/10.23919/comex.2024SPL0012&rft_dat=%3Cjstage_cross%3Earticle_comex_13_6_13_2024SPL0012_article_char_en%3C/jstage_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true