Machine learning-based area estimation using data measured under walking conditions
This study examines the accuracy and measurement costs associated with room-level indoor-area estimation using a wireless LAN. Utilizing fingerprinting, a method that compares user-measured access point (AP) information with pre-existing AP data from service providers, this study introduces a cost-e...
Gespeichert in:
Veröffentlicht in: | IEICE COMMUNICATIONS EXPRESS 2024/06/01, Vol.13(6), pp.172-175 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 175 |
---|---|
container_issue | 6 |
container_start_page | 172 |
container_title | IEICE COMMUNICATIONS EXPRESS |
container_volume | 13 |
creator | Nakayama, Shota Aikawa, Satoru Yamamoto, Shinichiro |
description | This study examines the accuracy and measurement costs associated with room-level indoor-area estimation using a wireless LAN. Utilizing fingerprinting, a method that compares user-measured access point (AP) information with pre-existing AP data from service providers, this study introduces a cost-effective approach. Our proposed machine learning (ML)-based method leverages data collected by users while traversing different locations within an area, thereby significantly reducing the measurement time. Furthermore, this study contrasts the effectiveness of convolutional neural networks (CNN) and support vector machines (SVM) in area estimation using this novel measurement technique. Both CNN and SVM demonstrated comparable accuracy, with SVM exhibiting a shorter processing time. |
doi_str_mv | 10.23919/comex.2024SPL0012 |
format | Article |
fullrecord | <record><control><sourceid>jstage_cross</sourceid><recordid>TN_cdi_crossref_primary_10_23919_comex_2024SPL0012</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>article_comex_13_6_13_2024SPL0012_article_char_en</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-f3086e645e7496faf983f0978b03ba3d435ab54be246c0004ff682b36861d3353</originalsourceid><addsrcrecordid>eNpNkM1OwzAQhC0EElXpC3DyC6TYXsdNjqiCgtQKpMLZ2iTrNiV1kJ0KeHvSH0EvuyvNfKvRMHYrxVhBLvO7st3S91gJpZevcyGkumADJbNJIiSYy7P7mo1i3AghQEnQKh2w5QLLde2JN4TB136VFBip4hgIOcWu3mJXt57vYq_xCjvkW8K4C71n5ysK_Aubj71Wtr6q9954w64cNpFGpz1k748Pb9OnZP4ye57ez5MS0rxLHIjMkNEpTXRuHLo8AyfySVYIKBAqDSkWqS5IaVP2mbVzJlMFmMzICiCFIVPHv2VoYwzk7Gfo84YfK4U9NGMPzdizZnpodoQ2scMV_SEYurps6ERIsGY_zsh_xxqDJQ-_0Ilx8g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Machine learning-based area estimation using data measured under walking conditions</title><source>J-STAGE Free</source><source>Open Access Titles of Japan</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Nakayama, Shota ; Aikawa, Satoru ; Yamamoto, Shinichiro</creator><creatorcontrib>Nakayama, Shota ; Aikawa, Satoru ; Yamamoto, Shinichiro</creatorcontrib><description>This study examines the accuracy and measurement costs associated with room-level indoor-area estimation using a wireless LAN. Utilizing fingerprinting, a method that compares user-measured access point (AP) information with pre-existing AP data from service providers, this study introduces a cost-effective approach. Our proposed machine learning (ML)-based method leverages data collected by users while traversing different locations within an area, thereby significantly reducing the measurement time. Furthermore, this study contrasts the effectiveness of convolutional neural networks (CNN) and support vector machines (SVM) in area estimation using this novel measurement technique. Both CNN and SVM demonstrated comparable accuracy, with SVM exhibiting a shorter processing time.</description><identifier>ISSN: 2187-0136</identifier><identifier>EISSN: 2187-0136</identifier><identifier>DOI: 10.23919/comex.2024SPL0012</identifier><language>eng</language><publisher>The Institute of Electronics, Information and Communication Engineers</publisher><subject>area estimation ; CNN ; fingerprinting ; indoor location estimation ; SVM</subject><ispartof>IEICE Communications Express, 2024/06/01, Vol.13(6), pp.172-175</ispartof><rights>2024 The Institute of Electronics, Information and Communication Engineers</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-f3086e645e7496faf983f0978b03ba3d435ab54be246c0004ff682b36861d3353</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1876,27903,27904</link.rule.ids></links><search><creatorcontrib>Nakayama, Shota</creatorcontrib><creatorcontrib>Aikawa, Satoru</creatorcontrib><creatorcontrib>Yamamoto, Shinichiro</creatorcontrib><title>Machine learning-based area estimation using data measured under walking conditions</title><title>IEICE COMMUNICATIONS EXPRESS</title><addtitle>IEICE ComEX</addtitle><description>This study examines the accuracy and measurement costs associated with room-level indoor-area estimation using a wireless LAN. Utilizing fingerprinting, a method that compares user-measured access point (AP) information with pre-existing AP data from service providers, this study introduces a cost-effective approach. Our proposed machine learning (ML)-based method leverages data collected by users while traversing different locations within an area, thereby significantly reducing the measurement time. Furthermore, this study contrasts the effectiveness of convolutional neural networks (CNN) and support vector machines (SVM) in area estimation using this novel measurement technique. Both CNN and SVM demonstrated comparable accuracy, with SVM exhibiting a shorter processing time.</description><subject>area estimation</subject><subject>CNN</subject><subject>fingerprinting</subject><subject>indoor location estimation</subject><subject>SVM</subject><issn>2187-0136</issn><issn>2187-0136</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkM1OwzAQhC0EElXpC3DyC6TYXsdNjqiCgtQKpMLZ2iTrNiV1kJ0KeHvSH0EvuyvNfKvRMHYrxVhBLvO7st3S91gJpZevcyGkumADJbNJIiSYy7P7mo1i3AghQEnQKh2w5QLLde2JN4TB136VFBip4hgIOcWu3mJXt57vYq_xCjvkW8K4C71n5ysK_Aubj71Wtr6q9954w64cNpFGpz1k748Pb9OnZP4ye57ez5MS0rxLHIjMkNEpTXRuHLo8AyfySVYIKBAqDSkWqS5IaVP2mbVzJlMFmMzICiCFIVPHv2VoYwzk7Gfo84YfK4U9NGMPzdizZnpodoQ2scMV_SEYurps6ERIsGY_zsh_xxqDJQ-_0Ilx8g</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Nakayama, Shota</creator><creator>Aikawa, Satoru</creator><creator>Yamamoto, Shinichiro</creator><general>The Institute of Electronics, Information and Communication Engineers</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240601</creationdate><title>Machine learning-based area estimation using data measured under walking conditions</title><author>Nakayama, Shota ; Aikawa, Satoru ; Yamamoto, Shinichiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-f3086e645e7496faf983f0978b03ba3d435ab54be246c0004ff682b36861d3353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>area estimation</topic><topic>CNN</topic><topic>fingerprinting</topic><topic>indoor location estimation</topic><topic>SVM</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nakayama, Shota</creatorcontrib><creatorcontrib>Aikawa, Satoru</creatorcontrib><creatorcontrib>Yamamoto, Shinichiro</creatorcontrib><collection>CrossRef</collection><jtitle>IEICE COMMUNICATIONS EXPRESS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nakayama, Shota</au><au>Aikawa, Satoru</au><au>Yamamoto, Shinichiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine learning-based area estimation using data measured under walking conditions</atitle><jtitle>IEICE COMMUNICATIONS EXPRESS</jtitle><addtitle>IEICE ComEX</addtitle><date>2024-06-01</date><risdate>2024</risdate><volume>13</volume><issue>6</issue><spage>172</spage><epage>175</epage><pages>172-175</pages><issn>2187-0136</issn><eissn>2187-0136</eissn><abstract>This study examines the accuracy and measurement costs associated with room-level indoor-area estimation using a wireless LAN. Utilizing fingerprinting, a method that compares user-measured access point (AP) information with pre-existing AP data from service providers, this study introduces a cost-effective approach. Our proposed machine learning (ML)-based method leverages data collected by users while traversing different locations within an area, thereby significantly reducing the measurement time. Furthermore, this study contrasts the effectiveness of convolutional neural networks (CNN) and support vector machines (SVM) in area estimation using this novel measurement technique. Both CNN and SVM demonstrated comparable accuracy, with SVM exhibiting a shorter processing time.</abstract><pub>The Institute of Electronics, Information and Communication Engineers</pub><doi>10.23919/comex.2024SPL0012</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2187-0136 |
ispartof | IEICE Communications Express, 2024/06/01, Vol.13(6), pp.172-175 |
issn | 2187-0136 2187-0136 |
language | eng |
recordid | cdi_crossref_primary_10_23919_comex_2024SPL0012 |
source | J-STAGE Free; Open Access Titles of Japan; EZB-FREE-00999 freely available EZB journals |
subjects | area estimation CNN fingerprinting indoor location estimation SVM |
title | Machine learning-based area estimation using data measured under walking conditions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T19%3A10%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstage_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20learning-based%20area%20estimation%20using%20data%20measured%20under%20walking%20conditions&rft.jtitle=IEICE%20COMMUNICATIONS%20EXPRESS&rft.au=Nakayama,%20Shota&rft.date=2024-06-01&rft.volume=13&rft.issue=6&rft.spage=172&rft.epage=175&rft.pages=172-175&rft.issn=2187-0136&rft.eissn=2187-0136&rft_id=info:doi/10.23919/comex.2024SPL0012&rft_dat=%3Cjstage_cross%3Earticle_comex_13_6_13_2024SPL0012_article_char_en%3C/jstage_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |