Simulation on Changes in Microstructure and Texture during Normal Grain Growth of Steel Sheet by Two-dimensional Local Curvature Multi-vertex Model

The two-dimensional local curvature multi-vertex model was applied to the normal grain growth of actual steel sheets for examination of the effect of the respective misorientation dependencies of grain boundary energy and mobility on grain growth and for comparison with experimental results. The sim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ISIJ International 2015/03/15, Vol.55(3), pp.655-661
Hauptverfasser: Tamaki, Teruyuki, Murakami, Kenichi, Hama, Chie, Ushioda, Kohsaku
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 661
container_issue 3
container_start_page 655
container_title ISIJ International
container_volume 55
creator Tamaki, Teruyuki
Murakami, Kenichi
Hama, Chie
Ushioda, Kohsaku
description The two-dimensional local curvature multi-vertex model was applied to the normal grain growth of actual steel sheets for examination of the effect of the respective misorientation dependencies of grain boundary energy and mobility on grain growth and for comparison with experimental results. The simulation result revealed that the grain boundary energy had a major influence on the change in misorientation distribution with grain growth, whereas the grain boundary mobility did not have such a large influence. The simulation considering the misorientation dependency on grain boundary energy and mobility, in particular, accounting for Σ1 and high angle boundaries was constructed and was effective for reproducing the experimental results. Simulated microstructures were similar to the experimental ones; however, the detailed standard deviation of grain size distribution was smaller in the calculation than that in the experiment. The texture change with grain growth in the simulation was weaker than that in the actual steel sheets. As a whole, the developed model described the experimental grain growth well, and the difference in the results between the simulation and the experiment is probably attributable to the difference in dimension; i.e., two-dimension in simulation and three-dimension in experiment and the inaccuracy of the grain boundary conditions such as grain boundary energy and mobility in the model.
doi_str_mv 10.2355/isijinternational.55.655
format Article
fullrecord <record><control><sourceid>jstage_cross</sourceid><recordid>TN_cdi_crossref_primary_10_2355_isijinternational_55_655</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>article_isijinternational_55_3_55_655_article_char_en</sourcerecordid><originalsourceid>FETCH-LOGICAL-c544t-738ccc0e1953e6077aa86dde6eed9bed825fb9e4ae858af0d72b2e38052c51643</originalsourceid><addsrcrecordid>eNptkNtOwzAMhiMEEtPYO-QFOtKm6eESTTAQG1xsXFdp4q6Z0hQl6Q7PwQvTddNuQLJsy_L3y_4RwiGZRpSxR-XUVhkP1nCvWsP1lLFpwtgNGoU0TgMWJ-QWjUgesiBkLL9HE-dUSUgUZzEN6Qj9rFTT6YHGfcxqbjbgsDJ4qYRtnbed8J0FzI3EazgMveysMhv80dqGazy3vF-f23bva9xWeOUBNF7VAB6XR7zet4FUDRg3XIgXrejzrLM7PogtO-1VsAPr4YCXrQT9gO4qrh1MLnWMvl6e17PXYPE5f5s9LQLB4tgHKc2EEATCnFFISJpyniVSQgIg8xJkFrGqzCHmkLGMV0SmURkBzQiLBAuTmI5RdtY9PeosVMW3VQ23xyIkxcnf4o-_RT_s_e3R9zO6dZ5v4Apy65XQ8D9IL_R1S9TcFmDoLwdElU8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Simulation on Changes in Microstructure and Texture during Normal Grain Growth of Steel Sheet by Two-dimensional Local Curvature Multi-vertex Model</title><source>DOAJ Directory of Open Access Journals</source><source>J-STAGE (Japan Science &amp; Technology Information Aggregator, Electronic) Freely Available Titles - Japanese</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Tamaki, Teruyuki ; Murakami, Kenichi ; Hama, Chie ; Ushioda, Kohsaku</creator><creatorcontrib>Tamaki, Teruyuki ; Murakami, Kenichi ; Hama, Chie ; Ushioda, Kohsaku</creatorcontrib><description>The two-dimensional local curvature multi-vertex model was applied to the normal grain growth of actual steel sheets for examination of the effect of the respective misorientation dependencies of grain boundary energy and mobility on grain growth and for comparison with experimental results. The simulation result revealed that the grain boundary energy had a major influence on the change in misorientation distribution with grain growth, whereas the grain boundary mobility did not have such a large influence. The simulation considering the misorientation dependency on grain boundary energy and mobility, in particular, accounting for Σ1 and high angle boundaries was constructed and was effective for reproducing the experimental results. Simulated microstructures were similar to the experimental ones; however, the detailed standard deviation of grain size distribution was smaller in the calculation than that in the experiment. The texture change with grain growth in the simulation was weaker than that in the actual steel sheets. As a whole, the developed model described the experimental grain growth well, and the difference in the results between the simulation and the experiment is probably attributable to the difference in dimension; i.e., two-dimension in simulation and three-dimension in experiment and the inaccuracy of the grain boundary conditions such as grain boundary energy and mobility in the model.</description><identifier>ISSN: 0915-1559</identifier><identifier>EISSN: 1347-5460</identifier><identifier>DOI: 10.2355/isijinternational.55.655</identifier><language>eng</language><publisher>The Iron and Steel Institute of Japan</publisher><subject>grain growth ; grain size ; local curvature ; misorientation ; texture ; vertex model</subject><ispartof>ISIJ International, 2015/03/15, Vol.55(3), pp.655-661</ispartof><rights>2015 by The Iron and Steel Institute of Japan</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c544t-738ccc0e1953e6077aa86dde6eed9bed825fb9e4ae858af0d72b2e38052c51643</citedby><cites>FETCH-LOGICAL-c544t-738ccc0e1953e6077aa86dde6eed9bed825fb9e4ae858af0d72b2e38052c51643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,1881,27922,27923</link.rule.ids></links><search><creatorcontrib>Tamaki, Teruyuki</creatorcontrib><creatorcontrib>Murakami, Kenichi</creatorcontrib><creatorcontrib>Hama, Chie</creatorcontrib><creatorcontrib>Ushioda, Kohsaku</creatorcontrib><title>Simulation on Changes in Microstructure and Texture during Normal Grain Growth of Steel Sheet by Two-dimensional Local Curvature Multi-vertex Model</title><title>ISIJ International</title><addtitle>ISIJ Int.</addtitle><description>The two-dimensional local curvature multi-vertex model was applied to the normal grain growth of actual steel sheets for examination of the effect of the respective misorientation dependencies of grain boundary energy and mobility on grain growth and for comparison with experimental results. The simulation result revealed that the grain boundary energy had a major influence on the change in misorientation distribution with grain growth, whereas the grain boundary mobility did not have such a large influence. The simulation considering the misorientation dependency on grain boundary energy and mobility, in particular, accounting for Σ1 and high angle boundaries was constructed and was effective for reproducing the experimental results. Simulated microstructures were similar to the experimental ones; however, the detailed standard deviation of grain size distribution was smaller in the calculation than that in the experiment. The texture change with grain growth in the simulation was weaker than that in the actual steel sheets. As a whole, the developed model described the experimental grain growth well, and the difference in the results between the simulation and the experiment is probably attributable to the difference in dimension; i.e., two-dimension in simulation and three-dimension in experiment and the inaccuracy of the grain boundary conditions such as grain boundary energy and mobility in the model.</description><subject>grain growth</subject><subject>grain size</subject><subject>local curvature</subject><subject>misorientation</subject><subject>texture</subject><subject>vertex model</subject><issn>0915-1559</issn><issn>1347-5460</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNptkNtOwzAMhiMEEtPYO-QFOtKm6eESTTAQG1xsXFdp4q6Z0hQl6Q7PwQvTddNuQLJsy_L3y_4RwiGZRpSxR-XUVhkP1nCvWsP1lLFpwtgNGoU0TgMWJ-QWjUgesiBkLL9HE-dUSUgUZzEN6Qj9rFTT6YHGfcxqbjbgsDJ4qYRtnbed8J0FzI3EazgMveysMhv80dqGazy3vF-f23bva9xWeOUBNF7VAB6XR7zet4FUDRg3XIgXrejzrLM7PogtO-1VsAPr4YCXrQT9gO4qrh1MLnWMvl6e17PXYPE5f5s9LQLB4tgHKc2EEATCnFFISJpyniVSQgIg8xJkFrGqzCHmkLGMV0SmURkBzQiLBAuTmI5RdtY9PeosVMW3VQ23xyIkxcnf4o-_RT_s_e3R9zO6dZ5v4Apy65XQ8D9IL_R1S9TcFmDoLwdElU8</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Tamaki, Teruyuki</creator><creator>Murakami, Kenichi</creator><creator>Hama, Chie</creator><creator>Ushioda, Kohsaku</creator><general>The Iron and Steel Institute of Japan</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20150101</creationdate><title>Simulation on Changes in Microstructure and Texture during Normal Grain Growth of Steel Sheet by Two-dimensional Local Curvature Multi-vertex Model</title><author>Tamaki, Teruyuki ; Murakami, Kenichi ; Hama, Chie ; Ushioda, Kohsaku</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c544t-738ccc0e1953e6077aa86dde6eed9bed825fb9e4ae858af0d72b2e38052c51643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>grain growth</topic><topic>grain size</topic><topic>local curvature</topic><topic>misorientation</topic><topic>texture</topic><topic>vertex model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tamaki, Teruyuki</creatorcontrib><creatorcontrib>Murakami, Kenichi</creatorcontrib><creatorcontrib>Hama, Chie</creatorcontrib><creatorcontrib>Ushioda, Kohsaku</creatorcontrib><collection>CrossRef</collection><jtitle>ISIJ International</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tamaki, Teruyuki</au><au>Murakami, Kenichi</au><au>Hama, Chie</au><au>Ushioda, Kohsaku</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulation on Changes in Microstructure and Texture during Normal Grain Growth of Steel Sheet by Two-dimensional Local Curvature Multi-vertex Model</atitle><jtitle>ISIJ International</jtitle><addtitle>ISIJ Int.</addtitle><date>2015-01-01</date><risdate>2015</risdate><volume>55</volume><issue>3</issue><spage>655</spage><epage>661</epage><pages>655-661</pages><issn>0915-1559</issn><eissn>1347-5460</eissn><abstract>The two-dimensional local curvature multi-vertex model was applied to the normal grain growth of actual steel sheets for examination of the effect of the respective misorientation dependencies of grain boundary energy and mobility on grain growth and for comparison with experimental results. The simulation result revealed that the grain boundary energy had a major influence on the change in misorientation distribution with grain growth, whereas the grain boundary mobility did not have such a large influence. The simulation considering the misorientation dependency on grain boundary energy and mobility, in particular, accounting for Σ1 and high angle boundaries was constructed and was effective for reproducing the experimental results. Simulated microstructures were similar to the experimental ones; however, the detailed standard deviation of grain size distribution was smaller in the calculation than that in the experiment. The texture change with grain growth in the simulation was weaker than that in the actual steel sheets. As a whole, the developed model described the experimental grain growth well, and the difference in the results between the simulation and the experiment is probably attributable to the difference in dimension; i.e., two-dimension in simulation and three-dimension in experiment and the inaccuracy of the grain boundary conditions such as grain boundary energy and mobility in the model.</abstract><pub>The Iron and Steel Institute of Japan</pub><doi>10.2355/isijinternational.55.655</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0915-1559
ispartof ISIJ International, 2015/03/15, Vol.55(3), pp.655-661
issn 0915-1559
1347-5460
language eng
recordid cdi_crossref_primary_10_2355_isijinternational_55_655
source DOAJ Directory of Open Access Journals; J-STAGE (Japan Science & Technology Information Aggregator, Electronic) Freely Available Titles - Japanese; EZB-FREE-00999 freely available EZB journals; Free Full-Text Journals in Chemistry
subjects grain growth
grain size
local curvature
misorientation
texture
vertex model
title Simulation on Changes in Microstructure and Texture during Normal Grain Growth of Steel Sheet by Two-dimensional Local Curvature Multi-vertex Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T23%3A50%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstage_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulation%20on%20Changes%20in%20Microstructure%20and%20Texture%20during%20Normal%20Grain%20Growth%20of%20Steel%20Sheet%20by%20Two-dimensional%20Local%20Curvature%20Multi-vertex%20Model&rft.jtitle=ISIJ%20International&rft.au=Tamaki,%20Teruyuki&rft.date=2015-01-01&rft.volume=55&rft.issue=3&rft.spage=655&rft.epage=661&rft.pages=655-661&rft.issn=0915-1559&rft.eissn=1347-5460&rft_id=info:doi/10.2355/isijinternational.55.655&rft_dat=%3Cjstage_cross%3Earticle_isijinternational_55_3_55_655_article_char_en%3C/jstage_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true