Two-stage Particle Swarm Optimization-based Nonlinear Model Predictive Control Method for Reheating Furnace Process

The steel slab temperature control of reheating furnace process plays an important role in the production of high quality reheated slab. Because of the characteristics of nonlinearity, long time-delay and uncertainty, high-accuracy slab temperature control is a challenging problem. This paper propos...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ISIJ International 2014/08/15, Vol.54(8), pp.1836-1842
Hauptverfasser: Tang, Zhenhao, Yang, Yang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1842
container_issue 8
container_start_page 1836
container_title ISIJ International
container_volume 54
creator Tang, Zhenhao
Yang, Yang
description The steel slab temperature control of reheating furnace process plays an important role in the production of high quality reheated slab. Because of the characteristics of nonlinearity, long time-delay and uncertainty, high-accuracy slab temperature control is a challenging problem. This paper proposes a two-stage particle swarm optimization (PSO)-based nonlinear model predictive control (NMPC) method to solve the problem. In this method support vector machine (SVM) is utilized to construct the nonlinear predictive model based on the real production data. To obtain better predictive model dynamically, PSO optimizes the parameters of SVM for different problems. Then PSO solves the rolling optimization problem in NMPC to obtain the proper control variables. Finally, the production data collected from a real reheating furnace process are utilized to test the proposed method. Numerical experiments are done by computer simulation based on the real production data. The experiment results illustrate that the PSO-based SVM can obtain accurate predictive model. Moreover, the proposed nonlinear model predictive control method can obtain outstanding control accuracy in steel slab temperature control.
doi_str_mv 10.2355/isijinternational.54.1836
format Article
fullrecord <record><control><sourceid>jstage_cross</sourceid><recordid>TN_cdi_crossref_primary_10_2355_isijinternational_54_1836</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>article_isijinternational_54_8_54_1836_article_char_en</sourcerecordid><originalsourceid>FETCH-LOGICAL-c548t-7021f19d1a16ff0234c4e67a32e71c345d198a92c02257b93dde9f10162f1c913</originalsourceid><addsrcrecordid>eNptkMtOwzAQRS0EEhX0H8wHpHj8SOIlqiggtRRBWUeuM2ldpXFlGxB8PX1AN7CazT33jg4hV8AGXCh17aJbuS5h6ExyvjPtQMkBlCI_IT0QssiUzNkp6TENKgOl9Dnpx-jmjHFZSgGiR-Lsw2cxmQXSJxOSsy3Slw8T1nS6SW7tvvbN2dxErOmj71rXoQl04mts6VPA2tnk3pEOfZeCb-kE09LXtPGBPuMSt3S3oKO37Yd2uxC8xRgvyVlj2oj9n3tBXke3s-F9Np7ePQxvxplVskxZwTg0oGswkDcN40JaiXlhBMcCrJCqBl0azS3jXBVzLeoadQMMct6A1SAuiD702uBjDNhUm-DWJnxWwKqdwOqPwErJaidwy44P7Gov50j-OPqfLH_xY8wuTaiwE9_yaoi-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Two-stage Particle Swarm Optimization-based Nonlinear Model Predictive Control Method for Reheating Furnace Process</title><source>DOAJ Directory of Open Access Journals</source><source>J-STAGE (Japan Science &amp; Technology Information Aggregator, Electronic) Freely Available Titles - Japanese</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Tang, Zhenhao ; Yang, Yang</creator><creatorcontrib>Tang, Zhenhao ; Yang, Yang</creatorcontrib><description>The steel slab temperature control of reheating furnace process plays an important role in the production of high quality reheated slab. Because of the characteristics of nonlinearity, long time-delay and uncertainty, high-accuracy slab temperature control is a challenging problem. This paper proposes a two-stage particle swarm optimization (PSO)-based nonlinear model predictive control (NMPC) method to solve the problem. In this method support vector machine (SVM) is utilized to construct the nonlinear predictive model based on the real production data. To obtain better predictive model dynamically, PSO optimizes the parameters of SVM for different problems. Then PSO solves the rolling optimization problem in NMPC to obtain the proper control variables. Finally, the production data collected from a real reheating furnace process are utilized to test the proposed method. Numerical experiments are done by computer simulation based on the real production data. The experiment results illustrate that the PSO-based SVM can obtain accurate predictive model. Moreover, the proposed nonlinear model predictive control method can obtain outstanding control accuracy in steel slab temperature control.</description><identifier>ISSN: 0915-1559</identifier><identifier>EISSN: 1347-5460</identifier><identifier>DOI: 10.2355/isijinternational.54.1836</identifier><language>eng</language><publisher>The Iron and Steel Institute of Japan</publisher><subject>nonlinear model predictive control ; particle swarm optimization ; reheating furnace ; steel slab temperature control</subject><ispartof>ISIJ International, 2014/08/15, Vol.54(8), pp.1836-1842</ispartof><rights>2014 by The Iron and Steel Institute of Japan</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c548t-7021f19d1a16ff0234c4e67a32e71c345d198a92c02257b93dde9f10162f1c913</citedby><cites>FETCH-LOGICAL-c548t-7021f19d1a16ff0234c4e67a32e71c345d198a92c02257b93dde9f10162f1c913</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,1883,27924,27925</link.rule.ids></links><search><creatorcontrib>Tang, Zhenhao</creatorcontrib><creatorcontrib>Yang, Yang</creatorcontrib><title>Two-stage Particle Swarm Optimization-based Nonlinear Model Predictive Control Method for Reheating Furnace Process</title><title>ISIJ International</title><addtitle>ISIJ Int.</addtitle><description>The steel slab temperature control of reheating furnace process plays an important role in the production of high quality reheated slab. Because of the characteristics of nonlinearity, long time-delay and uncertainty, high-accuracy slab temperature control is a challenging problem. This paper proposes a two-stage particle swarm optimization (PSO)-based nonlinear model predictive control (NMPC) method to solve the problem. In this method support vector machine (SVM) is utilized to construct the nonlinear predictive model based on the real production data. To obtain better predictive model dynamically, PSO optimizes the parameters of SVM for different problems. Then PSO solves the rolling optimization problem in NMPC to obtain the proper control variables. Finally, the production data collected from a real reheating furnace process are utilized to test the proposed method. Numerical experiments are done by computer simulation based on the real production data. The experiment results illustrate that the PSO-based SVM can obtain accurate predictive model. Moreover, the proposed nonlinear model predictive control method can obtain outstanding control accuracy in steel slab temperature control.</description><subject>nonlinear model predictive control</subject><subject>particle swarm optimization</subject><subject>reheating furnace</subject><subject>steel slab temperature control</subject><issn>0915-1559</issn><issn>1347-5460</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNptkMtOwzAQRS0EEhX0H8wHpHj8SOIlqiggtRRBWUeuM2ldpXFlGxB8PX1AN7CazT33jg4hV8AGXCh17aJbuS5h6ExyvjPtQMkBlCI_IT0QssiUzNkp6TENKgOl9Dnpx-jmjHFZSgGiR-Lsw2cxmQXSJxOSsy3Slw8T1nS6SW7tvvbN2dxErOmj71rXoQl04mts6VPA2tnk3pEOfZeCb-kE09LXtPGBPuMSt3S3oKO37Yd2uxC8xRgvyVlj2oj9n3tBXke3s-F9Np7ePQxvxplVskxZwTg0oGswkDcN40JaiXlhBMcCrJCqBl0azS3jXBVzLeoadQMMct6A1SAuiD702uBjDNhUm-DWJnxWwKqdwOqPwErJaidwy44P7Gov50j-OPqfLH_xY8wuTaiwE9_yaoi-</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Tang, Zhenhao</creator><creator>Yang, Yang</creator><general>The Iron and Steel Institute of Japan</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20140101</creationdate><title>Two-stage Particle Swarm Optimization-based Nonlinear Model Predictive Control Method for Reheating Furnace Process</title><author>Tang, Zhenhao ; Yang, Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c548t-7021f19d1a16ff0234c4e67a32e71c345d198a92c02257b93dde9f10162f1c913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>nonlinear model predictive control</topic><topic>particle swarm optimization</topic><topic>reheating furnace</topic><topic>steel slab temperature control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Zhenhao</creatorcontrib><creatorcontrib>Yang, Yang</creatorcontrib><collection>CrossRef</collection><jtitle>ISIJ International</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Zhenhao</au><au>Yang, Yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two-stage Particle Swarm Optimization-based Nonlinear Model Predictive Control Method for Reheating Furnace Process</atitle><jtitle>ISIJ International</jtitle><addtitle>ISIJ Int.</addtitle><date>2014-01-01</date><risdate>2014</risdate><volume>54</volume><issue>8</issue><spage>1836</spage><epage>1842</epage><pages>1836-1842</pages><issn>0915-1559</issn><eissn>1347-5460</eissn><abstract>The steel slab temperature control of reheating furnace process plays an important role in the production of high quality reheated slab. Because of the characteristics of nonlinearity, long time-delay and uncertainty, high-accuracy slab temperature control is a challenging problem. This paper proposes a two-stage particle swarm optimization (PSO)-based nonlinear model predictive control (NMPC) method to solve the problem. In this method support vector machine (SVM) is utilized to construct the nonlinear predictive model based on the real production data. To obtain better predictive model dynamically, PSO optimizes the parameters of SVM for different problems. Then PSO solves the rolling optimization problem in NMPC to obtain the proper control variables. Finally, the production data collected from a real reheating furnace process are utilized to test the proposed method. Numerical experiments are done by computer simulation based on the real production data. The experiment results illustrate that the PSO-based SVM can obtain accurate predictive model. Moreover, the proposed nonlinear model predictive control method can obtain outstanding control accuracy in steel slab temperature control.</abstract><pub>The Iron and Steel Institute of Japan</pub><doi>10.2355/isijinternational.54.1836</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0915-1559
ispartof ISIJ International, 2014/08/15, Vol.54(8), pp.1836-1842
issn 0915-1559
1347-5460
language eng
recordid cdi_crossref_primary_10_2355_isijinternational_54_1836
source DOAJ Directory of Open Access Journals; J-STAGE (Japan Science & Technology Information Aggregator, Electronic) Freely Available Titles - Japanese; EZB-FREE-00999 freely available EZB journals; Free Full-Text Journals in Chemistry
subjects nonlinear model predictive control
particle swarm optimization
reheating furnace
steel slab temperature control
title Two-stage Particle Swarm Optimization-based Nonlinear Model Predictive Control Method for Reheating Furnace Process
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T00%3A37%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstage_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two-stage%20Particle%20Swarm%20Optimization-based%20Nonlinear%20Model%20Predictive%20Control%20Method%20for%20Reheating%20Furnace%20Process&rft.jtitle=ISIJ%20International&rft.au=Tang,%20Zhenhao&rft.date=2014-01-01&rft.volume=54&rft.issue=8&rft.spage=1836&rft.epage=1842&rft.pages=1836-1842&rft.issn=0915-1559&rft.eissn=1347-5460&rft_id=info:doi/10.2355/isijinternational.54.1836&rft_dat=%3Cjstage_cross%3Earticle_isijinternational_54_8_54_1836_article_char_en%3C/jstage_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true